Some operator-theoretic calculus for positive definite kernels

Author:
Ameer Athavale

Journal:
Proc. Amer. Math. Soc. **112** (1991), 701-708

MSC:
Primary 47B38; Secondary 46E20, 47A57, 47B20, 47B37

DOI:
https://doi.org/10.1090/S0002-9939-1991-1068114-8

MathSciNet review:
1068114

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a positive definite kernel on the open unit disk in the complex plane, then we associate with it a positive definite kernel on and correlate some operator theoretic properties of and , where denotes the multiplication operator on the functional Hilbert space associated with . The main emphasis of this paper is on the discussion of hyponormality and subnormality properties. We also construct a sequence of positive definite kernels on such that is a -isometry, but not a -isometry for any positive integer less than or equal to .

**[1]**Jim Agler,*Hypercontractions and subnormality*, J. Operator Theory**13**(1985), no. 2, 203–217. MR**775993****[2]**Jim Agler,*A disconjugacy theorem for Toeplitz operators*, Amer. J. Math.**112**(1990), no. 1, 1–14. MR**1037599**, https://doi.org/10.2307/2374849**[3]**N. Aronszajn,*Theory of reproducing kernels*, Trans. Amer. Math. Soc.**68**(1950), 337–404. MR**0051437**, https://doi.org/10.1090/S0002-9947-1950-0051437-7**[4]**M. Badri and P. Szeptycki,*Cauchy products of positive sequences*, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp. 351–357. MR**1065834**, https://doi.org/10.1216/rmjm/1181073111**[5]**S. Barnard and J. M. Child,*Higher algebra*, Macmillan, London, 1959.**[6]**S. McCullough, private communication.**[7]**Stefan Richter,*A representation theorem for cyclic analytic two-isometries*, Trans. Amer. Math. Soc.**328**(1991), no. 1, 325–349. MR**1013337**, https://doi.org/10.1090/S0002-9947-1991-1013337-1**[8]**N. Salinas,*Products of kernels and module tensor products*, preprint.**[9]**Allen L. Shields,*Weighted shift operators and analytic function theory*, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. Math. Surveys, No. 13. MR**0361899****[10]**J. A. Shohat and J. D. Tamarkin,*The Problem of Moments*, American Mathematical Society Mathematical surveys, vol. I, American Mathematical Society, New York, 1943. MR**0008438****[11]**D. V. Widder,*The Laplace transform*, Princeton Univ. Press, Princeton, NJ, 1946.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B38,
46E20,
47A57,
47B20,
47B37

Retrieve articles in all journals with MSC: 47B38, 46E20, 47A57, 47B20, 47B37

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1068114-8

Keywords:
Positive definite kernel,
hyponormal,
subnormal,
-isometry

Article copyright:
© Copyright 1991
American Mathematical Society