Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An $ n\times n$ matrix of linear maps of a $ C\sp *$-algebra


Author: Ching Yun Suen
Journal: Proc. Amer. Math. Soc. 112 (1991), 709-712
MSC: Primary 46L05
DOI: https://doi.org/10.1090/S0002-9939-1991-1069296-4
MathSciNet review: 1069296
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Every positive $ n \times n$ matrix of linear functionals on a $ {C^ * }$-algebra is completely positive. [3, Theorem 2.1] can be extended to the case of a bounded $ n \times n$ matrix of linear functionals.


References [Enhancements On Off] (What's this?)

  • [1] W. B. Arveson, Subalgebras of $ {C^ * }$-algebras, Acta Math. 123 (1963), 141-224. MR 0253059 (40:6274)
  • [2] U. Haagerup, Injectivity and decomposition of completely bounded maps, Operator Algebras and Their Connections with Topology and Ergodic Theory (Busteni, 1983), Lecture Notes in Math., vol. 1132, Springer-Verlag, Berlin and New York, 1985, pp. 70-122. MR 799569 (87i:46133)
  • [3] A. Kaplan, Multi-states on $ {C^*}$-algebras, Proc. Amer. Math. Soc. 106 (1989), 437-446. MR 972233 (90a:46162)
  • [4] V. I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Math., vol. 146, Longman, London, 1986. MR 868472 (88h:46111)
  • [5] V. I. Paulsen and C.-Y. Suen, Commutant representations of completely bounded maps, J. Operator Theory 13 (1985), 87-101. MR 768304 (86d:46052)
  • [6] R. R. Smith, Completely bounded maps between $ {C^*}$-algebras, J. London Math. Soc. 27 (1983), 157-166. MR 686514 (84g:46086)
  • [7] R. R. Smith and J. D. Ward, Matrix ranges for Hilbert space operators, Amer. J. Math. 102 (1980), 1041-1081. MR 595006 (82a:46067)
  • [8] W. F. Stinespring, Positive functions on $ {C^*}$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. MR 0069403 (16:1033b)
  • [9] C.-Y. Suen, Completely bounded maps on $ {C^*}$-algebras, Proc. Amer. Math. Soc. 93 (1985), 81-87. MR 766532 (86d:46053)
  • [10] M. Takasaki, Theory of operator algebra 1, Springer-Verlag, Berlin, 1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05

Retrieve articles in all journals with MSC: 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1069296-4
Keywords: Positive map, completely positive linear map, completely bounded linear map, commutant representation
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society