THE SPACE \((l_\infty/c_0, \text{weak})\) IS NOT A RADON SPACE

JOSE L. DE MARIA AND BALTASAR RODRIGUEZ-SALINAS

(Communicated by Andrew M. Bruckner)

Abstract. Talagrand [10] gives an example of a Banach space with weak topology which is not a Radon space, independently of their weight. This result gives an answer to a question formulated by Schwartz [9]. In this paper, following the papers of Drewnowski and Roberts [1] and Talagrand [10], we prove that the classical space \((l_\infty/c_0, \text{weak})\) is not a Radon space.

Introduction. A Hausdorff topological space \(E\) is said to be a Radon space if every finite Borel measure is a Radon measure; i.e.,
\[
\mu(A) = \{\mu(K) : K \subseteq A, \ K \text{ compact}\}
\]
for each Borel subset \(A\) of \(E\).

We shall say that a cardinal \(\alpha\) is of measure zero (resp. nonmeasurable) if there is not a real-valued, diffuse, nontrivial measure (resp. \(\{0, 1\}\)-valued), on the power set of a set \(A\) with cardinal \(\alpha\).

The weight (density character) of a topological space \(E\) is the smallest cardinal such that there exists in \(E\) a dense subset \(A\) with this cardinal.

A topological space \(E\) has the \(\alpha\)-property of Lindelöf, \(\alpha\) a transfinite cardinal, if for each family \((G_i)_{i \in I}\) of open subsets of \(E\) there exists \(J \subseteq I\) such that \(\text{card}(J) \leq \alpha\) and \(\bigcup_{i \in I} G_i = \bigcup_{i \in J} G_i\). The smallest cardinal \(\alpha\) such that \(E\) has the \(\alpha\)-property of Lindelöf is called the \(L\)-weight of \(E\).

Likewise, \(E\) is a Flock space if for every well-ordered family \((G_i)_{i \in I}\) of open sets, with \(H_\alpha = G_\alpha \setminus \bigcup_{\beta < \alpha} G_\beta\), every union \(\bigcup_{a \in J} H_a\) \((J \subseteq I)\) is universally Borel-measurable. This property is an extrapolation of the Montgomery lemma [7], which proves that every metrizable space is Flock. Also, the strongly Lindelöf spaces are Flock spaces.

Let \(I\) be a noncountable set and \(x \notin I\). Consider the topology \(T\) on \(I \cup \{x\}\) such that the discrete topology is on \(I\) and the neighborhoods of \(x\) are the complementary sets of countable subsets of \(I\). Let \(K\) be the Stone-Čech compactification of this space. Then, as Talagrand [10] proved, \((C(K), \text{weak})\) is not a Radon space.
Talagrand also proved that \((Z, \text{weak})\) is not a Radon space when \(Z\) is the subspace of \(l^\infty(I)\) of the countable support functions and \(\text{card}(I) = \aleph_1\). Following that proof and the work of Drewnowski and Roberts \([1]\), this paper is devoted to proving that the classical space \((l^\infty/c_0, \text{weak})\) is not a Radon space. Note that this fact could be proved if \(Z\) were a subspace of \(l^\infty/c_0\), but this is not yet known. Let us remark that it is easily proved that \((E, \text{weak})\) is not a Radon space if the weight of \(E\) is real-measurable.

It is easily deduced that every Borel measure on \((l^\infty, \text{weak})\) valued on \(\{0, 1\}\) is a \(\delta_x\).

In Theorem 18 \([2]\) we proved that a Banach space with the weak topology is a Radon space if and only if it is Flock and its \(L\)-weight is of measure zero. Thus, in the last part of this paper, we prove that \(l^\infty/c_0\) is not a Flock space. Conversely, in \([4]\), we improved Schachermayer’s theorem, proving that a subset \(\Omega\) of a WCG Banach space with the weak topology whose weight is of measure zero is a Radon space of type \((\mathcal{F})\); that is, every finite Borel measure on \((\Omega, \text{weak})\) is \(\tau\)-additive.

1. **Theorem.** On \((l^\infty/c_0, \text{weak})\) there exists a Borel measure \(\mu \neq 0\) valued on \(\{0, 1\}\) such that the space is not a Radon measure.

Proof. Let \(\beta\omega\) be the Stone-Čech compactification of \(\omega = \mathbb{N}\) with discrete topology. Let \(\mathcal{A}\) be the clopen algebra of \(K = \beta\omega \setminus \omega\) and \(\mathcal{A}_0 = \mathcal{A} \setminus \{\emptyset\}\). \(\mathcal{A}\) has the following property (called the Cantor separability property in \([11]\)):

For every decreasing sequence \((A_n)\) in \(\mathcal{A}_0\) there exists an \(A \in \mathcal{A}_0\) such that \(A \subset \bigcap_{n=1}^{\infty} A_n\).

Let \(\mathcal{F} = (V_a)_{a \in A}\), a maximal well-ordered family in \(\mathcal{A}_0\). Then every countable intersection \(\bigcap_{n=1}^{\infty} V_n\) contains a \(V \in \mathcal{F}\). We denote by \(F\) the set of continuous functions from \(K\) in \(\{0, 1\}\) which vanish in \(H = \bigcap\{V : V \in \mathcal{F}\}\).

Like Talagrand, we are going to make two classes \(\mathcal{C}\) and \(\mathcal{D}\) of weak-Borel sets (Borel with the weak topology) in \(F \subset C(K)\) such that

(i) the smallest \(\sigma\)-algebra containing \(\mathcal{C}\) is the class \(\mathcal{B}\) of the weak-Borel sets of \(F\);

(ii) if \(C \in \mathcal{C}\), then either \(C \in \mathcal{D}\) or \(F \setminus C \in \mathcal{D}\);

(iii) every countable intersection of elements of \(\mathcal{D}\) is not empty; and

(iv) for every \(t \in K \setminus H\), \(\{f \in F : f(t) = 1\} \in \mathcal{D}\).

Now, we define a Borel measure \(\mu\) on \((F, \text{weak})\) by \(\mu(B) = 1\) if \(B \in \mathcal{B}\) and contains a countable intersection of members of \(\mathcal{D}\), and \(\mu(B) = 0\) in the other case. The measure \(\mu\) is not \(\tau\)-additive, because \(F\) is the union of the open sets \(G_t = \{f \in F : f(t) = 0\}\) when \(t \in K \setminus H\), \(\mu(F) = 1\), and each \(\mu(G_t) = 0\). It follows that there exists a Borel measure \(\mu_0\) on \((C(K), \text{weak}) \approx (l^\infty/c_0, \text{weak})\) valued in \(\{0, 1\}\) which is not a Radon measure.

Let \(k\) be an integer, \(J\) a set, \((\mu_p^p)_{p \leq k}\), of Radon measures on \(K\), and \((\alpha^p)_{p \leq k}, (\beta^p)_{p \leq k}\) rational numbers such that \(\alpha^p < \beta^p\). By definition, \(\mathcal{C}\) is the
class of sets \(C = \bigcup_{j \in J} U_j \), where
\[
U_j = \{ f \in F : \forall p \leq k, \mu_j^p(f) \in (a^p, b^p) \},
\]
varying over all \(k, J \) and measures \(\mu_j^p \).

The class \(\mathcal{D} \) is built up by the sets \(C \in \mathcal{E} \) such that, for every \(V \in \mathcal{Y} \), there exist \(j \in J \) and \(f \in U_j \) with \(f = 1 \) in \(K \setminus V \), and with the complementaries \(F \setminus C \) of the sets \(C \in \mathcal{E} \) such that they do not have this condition. Only (iii) has to be proved. To do this, it is enough that, for every sequence \((C_n) \subset \mathcal{E} \cap \mathcal{D} \) and every \(V_0 \in \mathcal{V} \), there exists \(f \in \bigcap_n C_n \) such that \(f = 1 \) in \(K \setminus V_0 \). It is easily proved (with the evident notations) that for every \(n \in \mathbb{N} \), there exists \(\varepsilon_n > 0 \) such that, if \(W \in \mathcal{Y} \), then there exist \(j \in J_n \) and \(f \in U_j \) with \(f = 1 \) on \(K \setminus W \), where
\[
U_j = \{ f \in F : \forall p \leq k_n, \mu_j^p(f) \in (a^p_n + \varepsilon_n, b^p_n - \varepsilon_n) \}.
\]

Let \(\mathcal{U}_n \) be an ultrafilter on \(J_n \) which contains all sets
\[
\{ j \in J_n : \exists f \in U_j, f = 1 \text{ on } K \setminus V \}
\]
when \(V \in \mathcal{Y} \). Given \(p \leq k_n \), let \(\nu_n^p = \lim_{\mathcal{U}_n} \mu_j^p \). Then there exists \(V \in \mathcal{Y} \), \(V \subset V_0 \), such that \(\nu_n^p(V \setminus W) = 0 \) for every \(W \in \mathcal{Y} \) and \(p \leq k_n, n \in \mathbb{N} \). Similarly, by means of an easy induction, there exist \(f_n \in F, j_n \in J_n, V_\alpha \), \(V'_\alpha \in \mathcal{Y} \) and clopen sets \(H_{n0}, H_{n1} \in \beta \omega \) such that

(i) \(\mu_j^p_n(V \setminus V_\alpha) \leq \varepsilon_n/2 \), for every \(n \) and \(p \leq k_n \);
(ii) \(f_n \in U_{j_n}' \) and \(f_n = 1 \) on \(K \setminus V_\alpha \);
(iii) \(f_n = 0 \) on \(V'_\alpha \subseteq V_\alpha \) and \(\mu_{j_n}^p(V_\alpha \setminus H) = 0 \) for every \(n \) and \(p \leq k_n \);
(iv)
\[
\begin{align*}
A_{00} &= \emptyset, & A_{01} &= K \setminus V, \\
A_{n0} &= \{ t \in V_\alpha \setminus V'_\alpha : f_n(t) = 0 \}, \\
A_{n1} &= \{ t \in V_\alpha \setminus V'_\alpha : f_n(t) = 1 \};
\end{align*}
\]
(v) \(H, H_{n0}, H_{n1} \) are pairwise disjoint sets such that \(H_{ni} \supseteq A_{ni} \cup H_{n-1, i} \), \(H_{0i} = A_{0i} \) for \(i = 0, 1 \);
(vi) The set \(V_{\alpha n+1} \) verifies that \(V_{\alpha n+1} \subset V'_\alpha \) and \(V_{\alpha n+1} \cap (H_{n0} \cup H_{n1}) = \emptyset \).

Clearly the open sets \(G_0 = \bigcup_{n=1}^{\infty} H_{n0} \) and \(G_1 = \bigcup_{n=1}^{\infty} H_{n1} \) are disjoint, but \(G_0 \cap G_1 = \emptyset \) also is, because if \(t \in G_0 \cap G_1 \), then \(t \in \beta \omega \) would be a cluster point of two disjoint sets of integer numbers contained in \(G_0 \) and \(G_1 \), respectively. As \((G_0 \cup G_1) \cap H = \emptyset \), then there exists a clopen \(H_1 \) in \(K \) such that \(\overline{G_1} \cap K \subset H_1 \), \(G_0 \cap K \cap H_1 = \emptyset \), and \(H \cap H_1 = \emptyset \).

Function \(f = \chi_{H_1} \in F \) satisfies \(f = f_n \) on \(A_n = A_{n0} \cup A_{n1} \). Moreover, since for every \(n \) and every \(p \leq k_n \), we have that \(\mu_j^p(f \neq f_n) < \varepsilon_n \). It follows that \(f \in U_{j_n} \) for every \(n \). Then \(f \in \bigcap_{n=1}^{\infty} C_n \) and \(f = 1 \) on \(K \setminus V_0 \).
2. **Corollary.** \((l_\infty/c_0, \text{ weak})\) is not a Radon space.

3. **Theorem.** Let \(\Omega\) be a Flock space whose \(L\)-weight is nonmeasurable. Then every finite perfect Borel measure \(\mu\) on \(\Omega\) is \(\tau\)-additive.

Proof. It is enough to prove that, for every family of open sets \((G_\alpha)_{\alpha \in A}\) in \(\Omega\),

\[
\mu \left(\bigcup_{\alpha \in A} G_\alpha \right) = \sup_{J} \mu \left(\bigcup_{\alpha \in J} G_\alpha \right),
\]

where the supremum is taken over all finite subsets \(J\) in \(A\).

From Zermelo's theorem, and since the \(L\)-weight of \(\Omega\) is nonmeasurable, then we can suppose \(A\) is well ordered and cardinally nonmeasurable. Let \(H_\alpha = G_\alpha \setminus \bigcup_{\beta < \alpha} G_\beta\). Since \(\Omega\) is a Flock space, the union \(\bigcup_{\alpha \in A} G_\alpha\) of every subfamily of \((H_\alpha)_{\alpha \in A}\) is a universally Borel-measurable set. By [5, Theorem 2.5], if \(S = \{ \alpha \in A : \mu(H_\alpha) \neq 0 \}\), then \(S\) is countable and \(\mu(\bigcup_{\alpha \in S} H_\alpha) = 0\).

Now,

\[
\mu \left(\bigcup_{\alpha \in A} G_\alpha \right) = \mu \left(\bigcup_{\alpha \in A} H_\alpha \right) = \mu \left(\bigcup_{\alpha \in S} H_\alpha \right) \leq \sup_{J} \mu \left(\bigcup_{\alpha \in J} G_\alpha \right),
\]

so

\[
\mu \left(\bigcup_{\alpha \in A} G_\alpha \right) = \sup_{J} \mu \left(\bigcup_{\alpha \in J} G_\alpha \right).
\]

4. **Corollary.** \((l_\infty/c_0, \text{ weak})\) is not a Flock space.

Proof. Follows from Theorems 1 and 3, since cardinal of \(l_\infty/c_0\) is nonmeasurable.

Remark. Since [3, Theorem 6] says that every Radon space is a Flock space, Corollary 4 improves Corollary 2. Even this theorem proves that a regular space \(E\) is Flock and its weight is of measure zero if and only if \(E\) is a Radon space of type \((\mathcal{F})\).

5. **Theorem.** If \((\varphi_n)\) is a sequence of continuous functions which separates points on a topological space \(E\), then every Borel measure \(\mu \neq 0\) on \(E\) which takes values in \(\{0, 1\}\) is concentrated in a point.

Proof. Let \(\nu\) be the Borel measure on \(\mathbb{R}\) defined by

\[
\nu(B) = \mu(\varphi^{-1}_1(B))
\]

on the class \(\mathcal{B}\) of Borel measure on \(\mathbb{R}\). Then, as \(\nu\) takes only the values 0 and 1, there exists \(\alpha_1 \in \mathbb{R}\) such that \(\mu(\varphi^{-1}_1(\alpha_1)) = 1\). Now, by induction, we can construct a sequence \((\alpha_n)\) in \(\mathbb{R}\) such that

\[
\mu \left(\bigcap_{k=1}^{n} \varphi^{-1}_k(\alpha_k) \right) = 1
\]

for every \(n\). To do this, it is enough to consider the following measure:

\[
\nu(B) = \mu \left(\bigcap_{k=1}^{n} \varphi^{-1}_k(\alpha_k) \cap \varphi^{-1}_{n+1}(B) \right) \quad (B \in \mathcal{B}).
\]
THE SPACE \((l_{\infty}/c_0, \text{weak})\) IS NOT A RADON SPACE

Then

\[\mu \left(\bigcap_{n=1}^{\infty} \varphi_n^{-1}(\alpha_n) \right) = 1. \]

Finally, as \((\varphi_n)\) separates points of \(E\), then \(\bigcap_{n=1}^{\infty} \varphi_n^{-1}(\alpha_n)\) contains only a point \(x\). So \(\mu\) is concentrated in \(x\).

6. Corollary. Every Borel measure \(\mu \neq 0\) on \((l_{\infty}, \text{weak})\) taking values in \(\{0, 1\}\) is concentrated in a point.

This allows us to formulate the following open question: Is \((l_{\infty}, \text{weak})\) a Flock space?

Remark. Drewnowski and Roberts [1] have proved that for every Schauder decomposition (finite or infinite) \(C = l_{\infty}/c_0 = X_1 + X_2 + \cdots\), at least one of \(X_n\) contains a space isomorphic to \(C\), complemented in \(C\). It can easily be proved, as in Theorem 5, that if \(C\) is a Banach space with a Schauder decomposition and there exists a nontrivial Borel measure \(\mu\) on \(C\) valued in \(\{0, 1\}\), then there exist \(n \in \mathbb{N}\) and a nontrivial Borel measure \(\mu_n\) on \(X_n\) taking values in \(\{0, 1\}\). So, taking into account that \(C \approx C \oplus C\) and \(C \approx l_{\infty} \oplus C\) \((C = l_{\infty}/c_0)\) the following question naturally appears:

Open question. If \(X\) is a complemented subspace in \(l_{\infty}/c_0\) on which there exists a nontrivial measure taking values in \(\{0, 1\}\), then does \(X\) have a complemented copy of \(C\)?

Let \(L = l_{\infty}([0, 1]^\varepsilon)\), where \(\varepsilon = 2^{\aleph_0}\) and \([0, 1]\) is considered with the product Lebesgue measure. If we suppose \(\varepsilon = \aleph_1(CH)\), then \(L\) is isometric to a complemented and closed subspace \(X\) of \(C\).

Another question arises:

Open question. Does there exist on \(L\) a nontrivial Borel measure \(\mu\) which only takes 0, 1 values?

References

1. L. Drewnowski and J. W. Roberts, On the primariness of the Banach space \(l_{\infty}/c_0\), preprint.
4. ———, Banach spaces which are Radon spaces with the weak topology (to appear).

Departamento Matemáticas Fundamentales, Facultad de Ciencias, U.N.E.D., 28040 Madrid, Spain

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain