Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the rank and the crank modulo $ 4$


Author: Richard Lewis
Journal: Proc. Amer. Math. Soc. 112 (1991), 925-933
MSC: Primary 11P83
MathSciNet review: 1057957
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ N(r,m,n)$ (respectively, $ M(r,m,n)$) denote the number of partitions of $ n$ whose ranks (respectively, cranks) are congruent to $ r$ modulo $ n$. It is shown that $ N(0,4,2n + 1) = M(1,4,2n + 1)$ and $ N(2,4,2n) = M(1,4,2n)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11P83

Retrieve articles in all journals with MSC: 11P83


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1991-1057957-2
PII: S 0002-9939(1991)1057957-2
Keywords: Partition, rank, crank
Article copyright: © Copyright 1991 American Mathematical Society