On the rank and the crank modulo

Author:
Richard Lewis

Journal:
Proc. Amer. Math. Soc. **112** (1991), 925-933

MSC:
Primary 11P83

DOI:
https://doi.org/10.1090/S0002-9939-1991-1057957-2

MathSciNet review:
1057957

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let (respectively, ) denote the number of partitions of whose ranks (respectively, cranks) are congruent to modulo . It is shown that and .

**[A]**George E. Andrews,*The theory of partitions*, Encyclopedia of Mathematics 2, Addison-Wesley, Reading, 1976. MR**0557013 (58:27738)****[AG]**George E. Andrews and F. G. Garvan,*Dyson's crank of a partition*, Bull. Amer. Math. Soc.**18**(1988), 166-171. MR**929094 (89b:11079)****[ASD]**A. O. L. Atkin and P. Swinnerton-Dyer,*Some properties of partitions*, Proc. London Math. Soc. (3)**4**(1954), 84-106. MR**0060535 (15:685d)****[Dl]**F. J. Dyson,*Some guesses in the theory of partitions*, Eureka**8**(1944), 10-15.**[D2]**-,*Mappings and symmetries of partitions*, J. Combin. Theory Ser. A**51**(1989), 169-180. MR**1001259 (90f:05009)****[G1]**F. G. Garvan,*New combinatorial interpretations of Ramanujan's partition congruences*, Trans. Amer. Math. Soc.**305**(1988), 47-77. MR**920146 (89b:11081)****[G2]**-,*The crank of partitions*, Trans. Amer. Math. Soc. (to appear).**[Go]**B. Gordon,*Some identities in combinatorial analysis*, Quart. J. Math. Oxford Ser. (2)**12**(1961), 285-290. MR**0136551 (25:21)****[L]**Richard Lewis,*On some relations between the rank and the crank*, J. Combin. Theory Ser. A (to appear). MR**1141325 (92k:11113)****[R]**S. Ramanujan,*Some properties of*,*the number of partitions of*, Paper 25 of Collected Papers of S. Ramanujan, Cambridge University Press, London and New York, 1927; reprinted Chelsea, New York, 1962.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11P83

Retrieve articles in all journals with MSC: 11P83

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1057957-2

Keywords:
Partition,
rank,
crank

Article copyright:
© Copyright 1991
American Mathematical Society