Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An operator-valued moment problem

Author: Luminiţa Lemnete
Journal: Proc. Amer. Math. Soc. 112 (1991), 1023-1028
MSC: Primary 47A57; Secondary 44A60
MathSciNet review: 1059628
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We link Carey's exponential representation of the determining function of a perturbation pair with the moment problem. We prove that an operator sequence represents the moments of a phase operator if and only if there is another positively defined sequence of operators satisfying a boundedness condition.

References [Enhancements On Off] (What's this?)

  • [1] N. I. Aheizer and M. Krein, Some questions in the theory of moments, translated by W. Fleming and D. Prill. Translations of Mathematical Monographs, Vol. 2, American Mathematical Society, Providence, R.I., 1962. MR 0167806
  • [2] R. W. Carey, Unitary invariant for self-adjoint operators, 1973.
  • [3] Mihai Putinar, The 𝐿 problem of moments in two dimensions, J. Funct. Anal. 94 (1990), no. 2, 288–307. MR 1081646, 10.1016/0022-1236(90)90015-D
  • [4] Donald Sarason, Moment problems and operators in Hilbert space, Moments in mathematics (San Antonio, Tex., 1987) Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987, pp. 54–70. MR 921084, 10.1090/psapm/037/921084
  • [5] F. H. Vasilescu, Introducere in teoria operatorilor liniari, Editura Tehnicā, 1987.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A57, 44A60

Retrieve articles in all journals with MSC: 47A57, 44A60

Additional Information

Keywords: $ L$-problem of moments, phase operator, determining function
Article copyright: © Copyright 1991 American Mathematical Society