FULLY INDECOMPOSABLE EXPONENTS
OF PRIMITIVE MATRICES

RICHARD A. BRUALDI AND BOLIAN LIU

(Communicated by Thomas H. Brylawski)

Abstract. If A is a primitive matrix, then there is a smallest power of A (its fully indecomposable exponent) that is fully indecomposable, and a smallest power of A (its strict fully indecomposable exponent) starting from which all powers are fully indecomposable. We obtain bounds on these two exponents.

1. Introduction

Let B_n denote the set of all matrices of order n over the Boolean algebra \{0, 1\} where, in particular, $1 + 1 = 1$. Then B_n is a semigroup whose binary operation is ordinary matrix multiplication. Let J_n denote the matrix in B_n each of whose entries equals 1. A matrix $A \in B_n$ is primitive provided there is a positive integer k such that $A^k = J_n$; the least positive integer k satisfying $A^k = J_n$ is the exponent $e(A)$ of A. Exponents of primitive matrices have been well studied, and those numbers that are exponents of primitive matrices of order n have been completely determined [4, 6, 7]. In particular the largest exponent of a primitive matrix of order n is $e_n = n^2 - 2n + 2$. We denote the set of primitive matrices in B_n by P_n.

A matrix $A \in B_n$ is partly decomposable provided for some positive integers r and s with $r + s = n$, A has an r by s zero submatrix. A matrix in B_n that is not partly decomposable is called fully indecomposable. It is well known that a fully indecomposable matrix is primitive and the exponents of fully indecomposable matrices have been studied [3]. We denote the set of fully indecomposable matrices in B_n by F_n. Thus $F_n \subseteq P_n$. Moreover, it follows that

\begin{equation}
P_n = \{A : A \in B_n \text{ and } A^k \in F_n \text{ for some positive integer } k\}.
\end{equation}
There is a one-to-one correspondence between the set \(B_n \) and the set \(\Gamma_n \) of digraphs with vertex set \(\{1, \ldots, n\} \). This correspondence is given as follows: If \(A = [a_{ij}] \in B_n \), then \(\Gamma(A) \) is the digraph in which there is an arc \((i, j)\) from \(i \) to \(j \) if and only if \(a_{ij} = 1 \) \((i, j = 1, \ldots, n)\). We note that since \(A \) may have 1's on its main diagonal, the digraph \(\Gamma(A) \) may have loops. We call a vertex \(i \) of a digraph a loop-vertex provided \((i, i)\) is a loop of the digraph. We call a digraph in \(\Gamma_n \) a primitive digraph provided it corresponds to a primitive matrix. The following properties are direct consequences of the definitions:

(1.2) If \(A \) is primitive, \(\Gamma(A) \) is strongly connected (that is, for each pair of distinct vertices \(i \) and \(j \), there is a walk from \(i \) to \(j \));

(1.3) \(A \) is primitive if and only if there is an integer \(k \) such that for each pair of distinct vertices \(i \) and \(j \) there is a walk in \(\Gamma(A) \) of length \(k \) from \(i \) to \(j \);

(1.4) \([1] A^k \) is fully indecomposable if and only if for each set \(X \) of \(r \) vertices with \(0 < r < n \), there are at least \(r + 1 \) different vertices that can be reached by a walk of length \(k \) which starts at a vertex in \(X \).

In addition the following is a well-known characterization of primitive matrices:

(1.5) \(A \) is primitive if and only if the greatest common divisor of the lengths of all (elementary) cycles of \(\Gamma(A) \) is 1.

Let \(A \) be a primitive matrix. It follows from (1.1) that there is a smallest positive integer \(k \) such that \(A^k \) is fully indecomposable; we denote the smallest such integer by \(f(A) \). Schwarz [5] raised the question of determining the numbers

\[f_n = \max\{f(A) : A \in P_n\} \quad (n \geq 1). \]

Before proceeding we observe an important difference that occurs in the investigation of the numbers \(e(A) \) and \(f(A) \) for primitive matrices \(A \). If \(A^k = J_n \), then because \(A \) can have no zero rows, \(A^i = J_n \) for all \(i \geq k \). However, if \(A^k \in F_n \), then it does not necessarily follow that \(A^i \in F_n \) for all \(i \geq k \). For example, let

\[A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}. \]

Then \(A^i \notin F_7 \) \((i = 1, \ldots, 7)\); \(A^8, A^9 \in F_7 \); \(A^{10}, A^{11} \notin F_7 \); and \(A^i \in F_7 \) \((i \geq 12)\). (It follows (cf. (1.1)) that \(A \) is primitive since some power of \(A \) is...
fully indecomposable.) For a primitive matrix A we define $f^*(A)$ to be the smallest positive integer k such that A^i is fully indecomposable for all $i \geq k$. We call $f(A)$ and $f^*(A)$, respectively, the fully indecomposable exponent and strict fully indecomposable exponent of the primitive matrix A. The matrix A in (1.6) satisfies $f(A) = 8$ and $f^*(A) = 12$. In general we have

$$f(A) \leq f^*(A) \leq e(A) \quad (A \in \mathbb{P}_n).$$

We define

$$f_n = \max\{f^*(A) : A \in \mathbb{P}_n\} \quad (n \geq 1),$$

and hereby raise the question of determining the numbers f_n^*. Clearly $f_n \leq f_n^* (n \geq 1)$.

In what follows we obtain bounds for the numbers f_n and f_n^*.

2. Bounds on the exponents

Let A be a matrix in B_n, with associated digraph $\Gamma(A)$, and let k be a nonnegative integer. For $X \subseteq \{1, \ldots, n\}$, $R_k(X)$ denotes the set of all those vertices that can be reached by a walk of length k in $\Gamma(A)$ starting from a vertex in X. (If $k = 0$, $R_k(X) = X$.) A restatement of (1.4) is:

$$A^k \text{ is fully indecomposable if and only if } |R_k(X)| > |X| \text{ for all } X \text{ with } \phi \neq X \subseteq \{1, \ldots, n\}. \quad (2.1)$$

Chao and Zhang [2] showed that $f(A) \leq n$ if $A \in \mathbb{P}_n$ and $\text{trace}(A) \neq 0$. We refine this result to obtain an inequality for $f^*(A)$ in Theorem 2.2.

Lemma 2.1. Let Γ be a strongly connected digraph with vertex set $\{1, \ldots, n\}$, let s be a positive integer, and let $Z = \{i_1, \ldots, i_s\}$ be a set of s loop-vertices of Γ. Then for each positive integer t,

$$|R_t(Z)| \geq \min\{s + t, n\}. \quad (2.2)$$

Proof. Suppose that $R_t(Z) \neq \{1, \ldots, n\}$. Since Γ is strongly connected, there is an arc (p, j) from some vertex $p \in R_t(Z)$ to a vertex $j \notin R_t(Z)$, because $j \notin R_t(Z)$ there is a vertex in Z, say i_1, such that the distance from i_1 to p is t and the distance from each of i_2, \ldots, i_s to p is at least t. Thus there is a walk (i_1, \ldots, p) of length t from i_1 to p containing $t+1$ distinct vertices all of which are different from i_2, \ldots, i_s. Since i_1, i_2, \ldots, i_s are loop-vertices, we conclude that

$$|R_t(Z)| \geq (s - 1) + (t + 1) = s + t,$$

and the lemma follows. □

Theorem 2.2. Let s be a positive integer, and let A be a matrix in \mathbb{P}_n having s 1's on its main diagonal. Then

$$f^*(A) \leq n - s + 1. \quad (2.3)$$
Proof. Let \(Z \) be the set of \(s \) loop-vertices of the digraph \(\Gamma(A) \), and let \(t \) be a positive integer. Let \(X \) be a set of vertices with \(\phi \neq X \subseteq \{1, \ldots, n\} \), and let \(k = |X| \). We show that

\[
|R_t(X)| \geq |X| + 1 \quad \text{for } t \geq n - s + 1.
\]

If \(|R_t(X)| = n \), then (2.4) holds. We now suppose that \(|R_t(X)| < n \). First assume that \(X \cap Z \neq \emptyset \). By Lemma 2.1

\[
|R_t(X)| \geq |R_t(X \cap Z)| \geq |X \cap Z| + t.
\]

Hence if \(t \geq n - s + 1 \),

\[
|R_t(X)| \geq |X \cap Z| + n - s + 1 \geq |X| + 1.
\]

Now assume that \(X \cap Z = \emptyset \). Let \(x^* \) be a vertex in \(X \) and let \(z^* \) be a vertex in \(Z \) such that \(x^* \) has the minimum distance \(d \) to \(z^* \) among all vertices \(x \) in \(X \) and \(z \) in \(Z \). Then

\[
d \leq n + 1 - |Z| - |X| = n + 1 - s - k.
\]

Because \(z^* \) is a loop-vertex, there are walks of length \(t \) from \(x^* \) to each vertex in \(R_k(z^*) \) for each integer \(t \geq (n + 1 - s - k) + k = n + 1 - s \). Using Lemma 2.1 we obtain that

\[
|R_t(X)| \geq |R_t(\{x^*\})| \geq |R_k(z^*)| \geq k + 1
\]

for each integer \(t \geq n + 1 - s \). Hence (2.4) holds, and using (1.4) we conclude that (2.3) holds. \(\Box \)

It is easy to construct matrices \(A \) satisfying the hypotheses of Theorem 2.2 for which equality holds in (2.3). Let \(s \) and \(n \) be positive integers with \(s \leq n \), and let \(\Gamma \) be the digraph obtained by including a loop at each of \(s \) consecutive vertices of a simple cycle of length \(n \). Then the matrix \(A \in B_n \) whose associated digraph is \(\Gamma \) is in \(P_n \) and satisfies \(f(A) = n + 1 - s \).

Corollary 2.3 (cf. [2]). Let the matrix \(A \) in \(P_n \) have nonzero trace. Then

\[
f(A) < f^*(A) < n.
\]

Corollary 2.4. Let \(A \) be a matrix in \(P_n \). Suppose that the digraph \(\Gamma(A) \) has a cycle of length \(r \) and that there are \(s \) vertices which belong to at least one cycle of length \(r \). Then

\[
f(A) \leq r(n - s + 1).
\]

Proof. The matrix \(A^r \) has \(s \) 1's on its main diagonal, and hence by Theorem 2.2 \((A^r)^{n-s+1} \) is fully indecomposable. \(\Box \)

The matrix

\[
A = \begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{bmatrix}
\]
satisfies the hypotheses of Corollary 2.4 with \(r = 3 \) and \(s = 4 \). Hence by (2.6), \(f(A) \leq 3 \). Since \(A^2 \neq J_4 \), \(f(A) = 3 \) and equality holds in (2.6).

We note the following consequences of Corollary 2.4:

\[
\text{(2.7) If } \Gamma(A) \text{ has a Hamilton cycle (so } r = s = n\text{), then } f(A) \leq n. \]

\[
\text{(2.8) If } A \text{ is symmetric (so } r = 2 \text{ and } s = n\text{), then } f(A) \leq 2. \]

Corollary 2.5. Let \(A \) be a matrix in \(P_n \). Suppose that the digraph \(\Gamma(A) \) has diameter \(d \). Then \(f(A) \leq 2d(n - d) \).

Proof. Since \(\Gamma(A) \) is strongly connected, there is a cycle of length \(r \leq 2d \) containing \(s \geq d + 1 \) distinct vertices. Hence by (2.6), \(f(A) \leq 2d(n - d) \).

We now use Corollary 2.4 to obtain an upper bound on the numbers \(f_n(n \geq 1) \).

Theorem 2.6. \(f_n \leq \lfloor \frac{1}{2}(n - 1)(n + 3) \rfloor \) for \(n \geq 1 \).

Proof. Let \(A \) be a matrix in \(P_n \). Since \(\Gamma(A) \) is strongly connected, \(\Gamma(A) \) has a simple cycle of length \(r \) for some \(r \) with \(1 \leq r \leq n \). Let \(s \) be the number of vertices which belong to at least one cycle of length \(r \). Then \(s \geq r \) and by Corollary 2.4,

\[
\text{(2.9) } f(A) \leq r(n - s + 1) \leq r(n - r + 1). \]

For integral \(r \), \(r(n - r + 1) \) achieves its maximum when \(r = (n + 1)/2 \) (\(n \) odd) and \(r = n/2, \, n/2 + 1 \) (\(n \) even). Since \(A \) is primitive, then by (1.5) the greatest common divisor of the lengths of the cycles is 1. Hence if \(n \) is odd and \(r = (n + 1)/2 \), \(\Gamma(A) \) has a cycle of length different from \((n + 1)/2 \).

We now obtain from (2.6) that

\[
f(A) \leq \begin{cases} (n^2 + 2n)/4, & (n \text{ even}) \\ (n^2 + 2n - 3)/4, & (n \text{ odd}) \end{cases}
\]

and the theorem follows.

The upper bound for \(f_n \) in Theorem 2.6 probably is not of the same order of magnitude as \(f_n \). The example (1.6) can be generalized to all \(n \geq 5 \) to show that \(f_n \geq 2n - 4 \). Indeed it is tempting to conjecture that \(f_n = 2n - 4 \) (\(n \geq 5 \)).

We now consider the maximum strict fully indecomposable exponent \(f^*_n \).

First we obtain by example a lower bound for \(f^*_n \).

Suppose that \(k \) and \(n \) are integers with \(n \geq 5 \) and \(2 \leq k \leq n - 3 \). Let \(A \) be the matrix in \(B_n \) whose associated digraph is pictured in Figure 1 (p. 1198). This digraph has cycles of lengths \(n - k + 1 \) and \(n - k \), and hence by (1.5) \(A \in P_n \). Let \(X_k = \{n - k + 1, \ldots, n\} \). One easily checks that

\[
|R_{i(n-k)-1}(X_k)| = i \quad (i = 1, \ldots, k).
\]

Hence it follows from (2.1) that

\[
\text{(2.10) } f^*_n(A) \geq k(n - k). \]
Indeed one may show that $f^*(A) = k(n - k)$. Taking $k = \lfloor n/2 \rfloor$ in (2.10) we obtain

\[(2.11) \quad f^*_n \geq \lfloor n/2 \rfloor \lceil n/2 \rceil \quad (n \geq 5).\]

For a primitive matrix A in B_n, $f^*(A) \leq e(A) \leq e_n = n^2 - 2n + 2$ and hence it follows that

\[(2.12) \quad f^*_n \leq n^2 - 2n + 2.\]

Let $\lambda(A)$ denote the number of distinct lengths of the cycles of $\Gamma(A)$. It follows from (1.5) that $\lambda(A) \geq 2$ if $n > 1$. We now turn our attention to obtaining an improved bound for $f^*(A)$ in the case that $\lambda(A) = 2$.

Lemma 2.7. Let Γ be a digraph in Γ_n, and let γ be a cycle of Γ of length r. If X is a set of vertices belonging to the cycle γ, then

\[R_{ir+j}(X) \subseteq R_{(i+1)r+j}(X) \quad (i \geq 0; \quad 0 \leq j \leq r-1).\]

Proof. If from some x in X there is a path of length $ir+j$ to a vertex z, then there is also a walk from x to z of length $(i+1)r+j$. \square

Lemma 2.8. Let Γ be a digraph in Γ_n, and let γ be a cycle of Γ of length r. Let X be the set of all vertices belonging to the cycle γ. Then

\[R_i(X) \subseteq R_{i+1}(X) \quad (i \geq 0).\]

Proof. If from some vertex x of X there is a walk of length i to a vertex z, then there is a walk of length $i+1$ to z from the vertex which precedes x in Γ. \square

Corollary 2.9. If Z is the set of vertices of Γ consisting of those vertices z for which there is a walk of length at most d to z from some vertex of the cycle γ, then $R_d(X) = Z$.

Lemma 2.10. Let r and s be relatively prime positive integers with $r > s$. Let Γ be a digraph in Γ_n with exactly two cycles γ and μ where γ has length r, and μ has length s. Then

\[R_{ir+j}(X) \subseteq R_{(i+1)r+j}(X) \quad (i \geq 0; \quad 0 \leq j \leq r-1).\]}
Figure 2. A digraph satisfying the hypotheses of Lemma 2.10 with $n = 10$, $r = 8$, and $s = 5$.

μ has length s, and γ and μ intersect. Let X be a nonempty set of vertices of the cycle γ. Then

$$|R_i(X)| \geq \min\{n, |X| + l\} \quad \text{if } i \geq lr \text{ and } l \geq 1. \quad (2.13)$$

Proof. A digraph Γ satisfying the hypotheses is pictured in Figure 2. Let Z be the set of vertices of γ, so that $\phi \neq X \subseteq Z$. For $i \geq 1$ let $X^{(i)}$ denote the set of vertices of γ that are reachable from X by a walk in γ of length i. It follows that $X^{(i)} = X^{(j)}$ if $i \equiv j \pmod{r}$. We first show that for $X \neq Z$, we have $|R_i(X) \cap Z| > |X|$. Since $X = X^{(r)} \subseteq R_r(X) \cap Z$, it suffices to show that $(R_r(X) \setminus X) \cap Z$ is nonempty. Suppose this set were empty. Then making use of the cycle μ we see that $X^{(r-s)} \subseteq R_r(X)$ and hence $X^{(r-s)} = X$. This implies that $X = X^{(s)}$ which contradicts the fact that r and s are relatively prime. It follows that (2.12) holds if $i = lr$ and $l \geq 1$. It now suffices to show that (2.12) holds for $l = 1$ and $r + 1 \leq i < 2r$.

If $X = Z$, then using Lemma 2.8 we see that

$$|R_i(X)| \geq \min\{n, |X| + i\}$$

for all $i \geq 1$. Hence we may assume that $X \neq Z$. If $R_i(X) \notin Z$, then the desired conclusion holds. We now assume that $R_i(X) \subseteq Z$. Contrary to what we wish to prove, we assume that $|R_i(X)| = |X|$, from which it follows that $R_i(X) = X^{(i)}$. Since $R_i(X) \subseteq Z$, we have that $R_{i-s}(X) \subseteq R_i(X)$. It follows that $X^{(i-s)} \subseteq X^{(i)}$ and hence that $X^{(i-s)} = X^{(i)}$, implying that the set $Y = X^{(i-s)}$ of vertices of γ satisfies $Y^{(s)} = Y$. Again we contradict the assumption that r and s are relatively prime. The proof of the lemma is now complete. \qed

We now obtain a bound for the strict fully indecomposable exponent $f^*(A)$ of a primitive matrix A for which the number $\lambda(A)$ of distinct cycle lengths of the digraph $\Gamma(A)$ equals 2.

Theorem 2.11. Let A be a matrix in P_n satisfying $\lambda(A) = 2$. Then

$$f^*(A) \leq \lfloor (n + 1)^2/4 \rfloor.$$
Proof. Let the lengths of the cycles of $\Gamma(A)$ be r and s where $r > s$, and r and s are relatively prime. There exist cycles γ and μ of Γ with lengths r and s, respectively, such that γ and μ intersect. Let the digraph Γ^* consist of the vertices and arcs of γ and μ, and let m be the number of vertices of Γ^*. Let Y be a subset of the vertices of Γ with $1 \leq k = |Y| \leq n - 1$. First suppose that γ and μ above can be chosen so that Y contains $p \geq 1$ vertices of γ. Applying Lemma 2.10 and Corollary 2.9, we see that

$$|R_i(Y)| \geq k + 1 \quad (i \geq (k - p + 1)r).$$

Since $r \leq n - (k - p)$, an easy calculation shows that

$$(k - p + 1)r \leq \left[\frac{1}{4}(n + 1)^2 \right].$$

Now suppose that γ and μ cannot be chosen so that γ contains a vertex of Y. In this case $r \leq n - k$. There is a walk of length t from some vertex in Y to some vertex x of γ where $t \leq n - r - k + 1$. Applying Lemma 2.10 and Corollary 2.9 again, we see that

$$|R_i(\{x\})| \geq k + 1 \quad (i \geq kr).$$

Hence

$$|R_i(Y)| \geq k + 1 \quad (i \geq kr + n - r - k + 1).$$

An easy calculation now shows that

$$kr + n - r - k + 1 \leq \left[\frac{n^2}{4} \right] + 1.$$

It follows that for all Y with $\phi \neq Y \subseteq X$,

$$|R_i(Y)| \geq |Y| + 1 \quad (i \geq \left[\frac{(n + 1)^2}{4} \right]).$$

Hence A^t is fully indecomposable for all integers $i \geq \left[\frac{(n + 1)^2}{4} \right].$ \hfill \Box

We conclude with the following remark. Let A be a primitive matrix of order n. The exponent $e(A)$ of A satisfies $e(A) \leq n^2 - 2n + 2$. If $\lambda(A) \geq 3$, then by a theorem of Lewin and Vitek [4], $e(A) \leq \left[(n^2 - 2n + 2)/2 \right] + 1$. In particular, the largest exponent for matrices in P_n occurs among those matrices with $\lambda(A) = 2$. We conjecture that the strict fully indecomposable exponent behaves in a similar way and thus that

$$f_n^* \leq \left[\frac{(n + 1)^2}{4} \right].$$

In view of (2.11) the validity of this latter inequality would imply that f_n^* is roughly $n^2/4$.

References

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: brualdi@math.wisc.edu

Department of Mathematics, South China Normal University, Guangzhou, People’s Republic of China