Fully indecomposable exponents of primitive matrices

Authors:
Richard A. Brualdi and Bo Lian Liu

Journal:
Proc. Amer. Math. Soc. **112** (1991), 1193-1201

MSC:
Primary 05C20; Secondary 05C50

MathSciNet review:
1065941

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If is a primitive matrix, then there is a smallest power of (its fully indecomposable exponent) that is fully indecomposable, and a smallest power of (its strict fully indecomposable exponent) starting from which all powers are fully indecomposable. We obtain bounds on these two exponents.

**[1]**Chong Yun Chao,*On a conjecture of the semigroup of fully indecomposable relations*, Czechoslovak Math. J.**27(102)**(1977), no. 4, 591–597 (English, with Loose Russian summary). MR**0450067****[2]**Chong Yun Chao and Mou Cheng Zhang,*On the semigroup of fully indecomposable relations*, Czechoslovak Math. J.**33(108)**(1983), no. 2, 314–319. MR**699029****[3]**Mordechai Lewin,*Bounds for exponents of doubly stochastic primitive matrices*, Math. Z.**137**(1974), 21–30. MR**0360638****[4]**Mordechai Lewin and Yehoshua Vitek,*A system of gaps in the exponent set of primitive matrices*, Illinois J. Math.**25**(1981), no. 1, 87–98. MR**602899****[5]**Štefan Schwarz,*The semigroup of fully indecomposable relations and Hall relations*, Czechoslovak Math. J.**23(98)**(1973), 151–163. MR**0316612****[6]**Jia Yu Shao,*On a conjecture about the exponent set of primitive matrices*, Linear Algebra Appl.**65**(1985), 91–123. MR**774345**, 10.1016/0024-3795(85)90090-4**[7]**Ke Min Zhang,*On Lewin and Vitek’s conjecture about the exponent set of primitive matrices*, Linear Algebra Appl.**96**(1987), 101–108. MR**910988**, 10.1016/0024-3795(87)90338-7

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
05C20,
05C50

Retrieve articles in all journals with MSC: 05C20, 05C50

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1991-1065941-8

Article copyright:
© Copyright 1991
American Mathematical Society