Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On a conjecture of Tarski on products of cardinals

Authors: Thomas Jech and Saharon Shelah
Journal: Proc. Amer. Math. Soc. 112 (1991), 1117-1124
MSC: Primary 03E10; Secondary 03E35
MathSciNet review: 1070525
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We look at an old conjecture of A. Tarski on cardinal arithmetic and show that if a counterexample exists, then there exists one of length $ {\omega _1} + \omega $.

References [Enhancements On Off] (What's this?)

  • [GH] F. Galvin and A. Hajnal, Inequalities for cardinal powers, Ann. of Math. (2) 101 (1975), 491-498. MR 0376359 (51:12535)
  • [M] M. Magidor, On the singular cardinals problem. I, Israel J. Math. 28 (1977), 1-31. MR 0491183 (58:10449a)
  • [ShA2] S. Shelah, Proper Forcing, Lecture Notes in Math., vol. 940, Springer-Verlag, 1982. MR 675955 (84h:03002)
  • [Sh345] -, Products of regular cardinals and cardinals invariants of products of Boolean algebras, Israel J. Math. 70 (1990), 129-187. MR 1070264 (91i:03102)
  • [Sh355] -, $ \aleph _{ \omega + 1}$ has a Jonsson algebra, preprint.
  • [T] A. Tarski, Quelques théorèmes sur les alephs, Fund. Math. 7 (1925), 1-14.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E10, 03E35

Retrieve articles in all journals with MSC: 03E10, 03E35

Additional Information

Keywords: Cardinal arithmetic, singular cardinals problem, $ pc f$
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society