A NOTE ON CONTINUOUS MAPPINGS AND THE PROPERTY OF J. L. KELLEY

HISAO KATO

(Communicated by James E. West)

Abstract. In this paper, it is proved that if X is a continuum and ω is any Whitney map for $C(X)$, then the following are equivalent:

1. X has property $[K]$.
2. There exists a (continuous) mapping $F: X \times I \times [0, \omega(X)] \to C(X)$ such that $F(\{x\} \times I \times \{t\}) = \{A \in \omega^{-1}(t) | x \in A\}$ for each $x \in X$ and $t \in [0, \omega(X)]$, where $I = [0, 1]$.
3. For each $t \in [0, \omega(X)]$, there is an onto map $f: X \times I \to \omega^{-1}(t)$ such that $f(\{x\} \times I) = \{A \in \omega^{-1}(t) | x \in A\}$ for each $x \in X$. Some corollaries are obtained also.

0. Introduction

By a continuum we mean a compact connected metric space. For a continuum X, $C(X)$ denotes the hyperspace of all nonempty subcontinua of X, with the topology induced by the Hausdorff metric d_H. Then the hyperspace $C(X)$ is a continuum, and in fact, is pathwise connected. In [6, 2.7. Theorem], Kelley proved that $C(X)$ is the continuous image of the Cantor fan, i.e., the cone over the Cantor set.

In this paper, we prove the following: Let X be a continuum and ω be any Whitney map for $C(X)$. Then the following are equivalent:

1. X has property $[K]$.
2. There exists a map $F: X \times I \times [0, \omega(X)] \to C(X)$ such that

$$F(\{x\} \times I \times \{t\}) = \omega^{-1}_x(t)$$

for each $x \in X$, where $\omega^{-1}_x(t) = \{A \in \omega^{-1}(t) | x \in A\}$.
3. For each $t \in [0, \omega(X)]$, there is an onto map $f: X \times I \to \omega^{-1}(t)$ such that $f(\{x\} \times I) = \omega^{-1}_x(t)$ for each $x \in X$.

Received by the editors April 18, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 54B20, 54C65; Secondary 54C05, 54C60.

Key words and phrases. Hyperspaces of continua, Whitney map, property $[K]$, continuous selection, weakly chainable, uniformly pathwise connected.

©1991 American Mathematical Society
0002-9939/91 $1.00 + .25$ per page
Note that if F is a map that satisfies (2) as above, then $F(\{x\} \times I \times \{0\}) = \{x\}$ for each $x \in X$ and $F|X \times I \times \{t\} \to \omega^{-1}(t)$ is surjective. It is known that the hyperspace $C(X)$ is contractible if and only if there is a map $G: X \times [0, \omega(X)] \to C(X)$ such that $G(x, t) \in \omega^{-1}_x(t)$ for each $x \in X$ and $t \in [0, \omega(X)]$, where ω is any Whitney map for $C(X)$ (see [6]).

To prove the above theorem, we use a selection theorem of D. W. Curtis [2, Theorem 2.2] and an idea of S. Ferry [4, the proof of 3.1]. As a corollary, the property of being weakly chainable (or uniformly pathwise connected) is a Whitney property for the class of continua that have property [K]. The first is a partial answer to Roger’s problem [11, pp. 384, 112]. Also, the following problem is considered: Is it true that the property [K] is a Whitney property?

We refer the reader to Nadler’s monograph [13] for hyperspace theory.

1. Preliminaries

Let X be a continuum. A map $\omega: C(X) \to [0, \infty)$ is said to be a Whitney map for $C(X)$ provided that ω satisfies the following conditions:

1. $\omega(\{x\}) = 0$ for each $x \in X$ and
2. if $A, B \in C(X), A \subset B$, and $A \neq B$, then $\omega(A) < \omega(B)$.

In [15] Whitney proved that there always exists a Whitney map on any continuum. Then $\omega^{-1}(t) \ (0 \leq t < \omega(X))$ is a continuum and it is called a Whitney continuum. Let X be a continuum with metric d. Then X has property [K] [6] if for every $\varepsilon > 0$ there exists $\delta > 0$ such that, for every pair of points x, y of X with $d(x, y) < \delta$ and every subcontinuum A containing x, there exists a subcontinuum B containing y with $d_H(A, B) < \varepsilon$. In [14] Wardle proved that a continuum X has property [K] if and only if the set-valued function $\alpha: X \to C(X)$, where $\alpha(x) = \{A \in C(X)|x \in A\}$, is continuous. We may assume that X is naturally contained in $C(X)$.

Let (Y, d) be a metric space, and for each positive integer n let $P_n = \{(t_i) \in I^n|\sum_{i=1}^n t_i = 1\}$. A convex structure on (Y, d) [2,2.1] is a sequence of subsets $M_n \subset Y^n$ and maps $k_n: M_n \times P_n \to Y$ satisfying the following conditions:

1. $k_n(y, \ldots, y; t_1, \ldots, t_n) = y$;
2. $k_n(y_1, y_2, \ldots, y_n; t_1, t_2, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) = k_{n-1}(y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n; t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n)$;
3. for each $\varepsilon > 0$ there is $\delta > 0$ such that for every n and $(t_i) \in P_n$,

 $d(k_n((y_i); (t_i)), k_n((y'_i); (t'_i))) < \varepsilon$ if $d(y_i, y'_i) < \delta$ for each i.

A subset C of Y is convex if for each $n, C^n \subset M_n$ and $k_n(C^n \times P_n) \subset C$. In [2, 2.2. Theorem] Curtis proved the following selection theorem:

1. Theorem (D. W. Curtis). Let X be paracompact, (Y, d) a metric space with a convex structure, and $\Phi: X \to Y$ a lower semicontinuous set-valued
function, with each $\Phi(x)$ a complete, convex subset of Y. Then Φ admits a continuous selection $s : X \to Y$.

2. Result

In this section, we prove the following main result of this paper:

(2.1) Theorem. Let X be a continuum and ω be a Whitney map for $C(X)$. Then the following are equivalent:

(1) X has property [K].

(2) There exists $F : X \times I \times [0, \omega(X)] \to C(X)$ such that $F(\{x\} \times I \times \{t\}) = \omega^{-1}_x(t)$ for each $x \in X$ and $t \in [0, \omega(X)]$, where $\omega^{-1}_x(t) = \{ A \in \omega^{-1}(t) \mid x \in A \}$.

(3) For each $t \in [0, \omega(X)]$, there is an onto map $f : X \times I \to \omega^{-1}(t)$ such that $f(\{x\} \times I) = \omega^{-1}_x(t)$ for each $x \in X$.

To prove (2.1) we need the following:

(2.2) Theorem (cf. [7, (2.3)]). Let X be a continuum and ω be any Whitney map for $C(X)$. Then for any $\epsilon > 0$ there is $\delta > 0$ such that if $A, B \in C(X)$, $|\omega(A) - \omega(B)| < \delta$ and $B \subset U(A, \delta)$, then $d_H(A, B) < \epsilon$, where $U(A, \delta)$ denotes the δ-neighborhood of A in X.

A map $f : X \to B$ between metric spaces is said to be strongly regular if f is proper and if for each $b \in B$ and $\epsilon > 0$ there is $\delta > 0$ such that if $d(b, b') < \delta$, then there are maps $g_{bb'} : f^{-1}(b) \to f^{-1}(b')$ and $g_{b'b} : f^{-1}(b') \to f^{-1}(b)$ and homotopies $h : f^{-1}(b) \to f^{-1}(b)$ and $k : f^{-1}(b') \to f^{-1}(b')$ such that

(i) $d(g_{bb'}(x), x) < \epsilon$ and $d(h_{t}(x), x) < \epsilon$ for all $x \in f^{-1}(b)$ and $0 \leq t \leq 1$,

(ii) $d(g_{b'b}(x), x) < \epsilon$ and $d(k_{i}(x), x) < \epsilon$ for all $x \in f^{-1}(b')$ and $0 \leq t \leq 1$,

(iii) $h_0 = g_{bb'} \cdot g_{b'b}$ and $h_1 = \text{id}$,

(iv) $k_0 = g_{bb'} \cdot g_{b'b}$ and $k_1 = \text{id}$.

(2.3) Lemma. Let $\Lambda(X) \subset C(C(X))$ denote the space of maximal order arcs in $C(X)$, and let $e : \Lambda(X) \to X$ be the map defined by $e(\alpha) = \alpha(0)$ for $\alpha \in \Lambda(X)$ (see [2]). If X has property [K], then e is a strongly regular mapping.

Proof. Let ω be a Whitney map for $C(X)$. Also, let $\epsilon > 0$ and $x_0 \in X$. By (2.2) there exist open subsets $U_{1}^*, U_{2}^*, \ldots, U_{n}^*$ of $\Lambda(X)$ such that $\bigcup U_i^* \supset e^{-1}(x_0)$ and $\text{diam} U_i^* < \epsilon/2$ for each i, where U_i^* is of the following form:

$U_i^* = \{ \alpha \in \Lambda(X) \mid \alpha(t_j^i) \in V_j^i \text{ for some } 0 \leq t_j^i < t_1^i < \cdots < t_n^i \leq \omega(X) \}$ and open subsets $V_0^i, V_1^i, \ldots, V_n^i$ of X, where $\alpha(t_j^i) \in \alpha$ with $\omega(\alpha(t_j^i)) = t_j^i$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let \(W^*_j \in \{ \alpha \in \Lambda(X) | \alpha(i_j^j) \subset \text{Cl} \ V^j \} \) for each \(j = 0, 1, \ldots, n \). Note that \(W^*_j \) is closed in \(\Lambda(X) \) and \(U^*_j \subset W^*_j \). Note that if \(V^j \) \((i = 1, 2, \ldots, n)\) is a neighborhood of \(\alpha \) such that \(\text{Cl} \ V^j+1 \subset V^j \), \(\cap \text{Cl} V^j = \{ \alpha \} \), and \(U^*_j = \{ \alpha \in \Lambda(X) | \alpha(0) \in V^j \} \), then \(\cap U^*_j = e^{-1}(x_0) \).

We may assume that \(\text{diam} W^*_j < \varepsilon \) and \(\cap_{j \in J} U^*_j(x_0) = \emptyset \) if and only if \(\cap_{j \in J} U^*_j \neq \emptyset \), where \(J \) is a subset of \(\{0, 1, \ldots, n\} \) and \(U^*_j(x_0) = e^{-1}(x_0) \cap U^*_j \). Since \(e \) is an open map, there is a neighborhood \(O \) of \(\alpha \) such that \(e^{-1}(x) \subset \bigcup_{j} U^*_j \) and \(e^{-1}(x) \cap \cap_{j \in J} U^*_j \neq \emptyset \) if and only if \(\cap_{j \in J} U^*_j(x_0) \neq \emptyset \). For each \(x \in O \), let \(U^*_j(x) = e^{-1}(x) \cap W^*_j \).

We show that \(W^*_j(x) \) is convex. Consider \(\alpha_1, \alpha_2, \ldots, \alpha_n \in e^{-1}(x) \) and \((t_1, t_2, \ldots, t_n) \in P_n \). Suppose first that each \(t_i > 0 \). Define \(k_n(\alpha_1, \alpha_2, \ldots, \alpha_n; t_1, t_2, \ldots, t_n) = \alpha \), where \(\alpha = \{ \alpha_i(t) \mid 1 \leq i \leq n \} \subset C(X) \) and \(t_i = t_i/(t_i + \cdots + t_n) \). In the case that \(t_i = 0 \) for some \(i \), \(k_n(\alpha_1, \alpha_2, \ldots, \alpha_n; t_1, t_2, \ldots, t_n) \) is defined by the boundary condition (C2) (see the proof of [2, (4.1)]). Clearly, if \(\alpha_1, \alpha_2, \ldots, \alpha_n \in W^*_j(x) \), then \(k_n(\alpha_1, \alpha_2, \ldots, \alpha_n; t_1, t_2, \ldots, t_n) \in W^*_j(x) \) and \(\{k_n \} \) satisfies all the conditions for a convex structure. Hence \(W^*_j(x) \) is convex, in particular, an AR. If \(\cap_{j \in J} W^*_j(x) \neq \emptyset \) for a subset \(J \) of \(\{0, 1, \ldots, n\} \), then \(\cap_{j \in J} W^*_j(x) \) is an AR. Note that \(\cap_{j \in J} W^*_j(x_0) \neq \emptyset \) if and only if \(\cap_{j \in J} W^*_j(x) \neq \emptyset \). Hence we can see that there is a map \(f: e^{-1}(x) \to e^{-1}(x_0) \) such that \(f(W^*_j(x)) \subset W^*_j(x_0) \) for each \(i \). Also, there is a map \(g: e^{-1}(x_0) \to e^{-1}(x) \) such that \(g(W^*_j(x_0)) \subset W^*_j(x) \) for each \(i \). Clearly, \(f \circ g(W^*_j(x_0)) \subset W^*_j(x_0) \) and \(g \circ f(W^*_j(x)) \subset W^*_j(x) \) for each \(i \). We can easily see that \(f \) and \(g \) satisfy the desired conditions. Thus \(e: \Lambda(X) \to X \) is a strongly regular mapping with AR fibers.

Proof of (2.1). First, we prove that (1) implies (2). We use Ferry's idea as in the proof of [4, 3.1]. In [2] it was proved that \(\Lambda(X) \) has a convex structure. By \((2.3) \) \(e \) is a strongly regular mapping with AR fibers. Note that \(e^{-1}(x) \) is convex (see [2]). Since \(\Lambda(X) \) is a compact metric space, it can be embedded in the Hilbert cube \(Q = [0, 1]^\infty \). Let \(F(Q, \Lambda(X)) \) be the space of maps from \(Q \) to \(\Lambda(X) \) in the sup norm and let \(H \subset F(Q, \Lambda(X)) \) be the subspace \(\{ g | g \text{ retracts } Q \text{ onto some } e^{-1}(x) \} \). Note that \(H \) is complete.

Define a convex structure on \(H \) as follows: Suppose that \(M_0 \subset \Lambda(X)^n \) and \(k_n : M_0 \times P_n \to \Lambda(X) \) satisfy the conditions of convex structure on \(\Lambda(X) \). By \([2, 4.1] \) \(e^{-1}(x) \) is a convex subset for each \(x \in X \). Let \(q: H \to X \) be the map defined by \(q(r) = x \), if \(r \) retracts \(Q \) onto \(e^{-1}(x) \). Let \(M^*_n = \{(r_1, \ldots, r_n) \in H^n | q(r_1) = \cdots = q(r_n) \} \) and let \(k_n^*: M^*_n \times P_n \to H \) be the map defined by \(k_n^*(r_1, \ldots, r_n; t_1, \ldots, t_n)(z) = k_n(r_1(z), \ldots, r_n(z); t_1, \ldots, t_n) \) for each \(z \in Q \). Clearly, \(H \) has a convex structure. By [4, Step I, p. 376] \(q \) is an open map. Since \(q^{-1}(x) \) is convex in \(H \), by (1.1) there is a section \(s: X \to H \) of \(q \), i.e., \(q \circ s = \text{id}_X \).
Define a map \(G: X \times Q \rightarrow A(X) \) by \(G(x, z) = s(x)(z) \) for each \(x \in X \) and \(z \in Q \). Define a map \(G': X \times Q \times [0, \omega(X)] \rightarrow C(X) \) by \(G'(x, z, t) = G(x, z) \cap \omega^{-1}(t) \). Finally, choose an onto map \(h: I \rightarrow Q \) and then define \(F: X \times I \times [0, \omega(X)] \rightarrow C(X) \) by \(F(x, s, t) = G'(x, h(s), t) \). Clearly, \(F \) satisfies the desired conditions.

Clearly, (2) implies (3). Also, (3) implies (1) (see [13, (16.14)]).

3. SOME COROLLARIES

In this section, we give some applications of (2.1). In [10, 3] Lelek and Fearnley respectively defined the notion “weakly chainable,” and they proved that a continuum \(X \) is weakly chainable if and only if \(X \) is a continuous image of the pseudo-arc. Clearly, the product of two weakly chainable continua is weakly chainable. By (2.1) we have:

\((3.1) \) Corollary. The property of being weakly chainable is a Whitney property for the class of continua that have property \([K]\).

\((3.1) \) is a partial answer to Rogers problem [11, p. 384].

In [9] Kuperberg defined the notion “uniformly pathwise connected” and he proved that a continuum \(X \) is uniformly pathwise connected if and only if \(X \) is a continuous image of the Cantor fan. By [9, (3.7)] we easily see that the product of two uniformly pathwise connected continua is uniformly pathwise connected. Hence we have:

\((3.2) \) Corollary. The property of being uniformly pathwise connected is a Whitney property for the class of continua that have property \([K]\).

In [12, p. 558; 14, p. 295], Nadler and Wardle respectively asked the following problem:

\((*) \) If a continuum \(X \) has property \([K]\), is it true that \(C(X) \) or \(\omega^{-1}(t) \) has property \([K]\)?

(See [5] for a partial answer.) Here, we consider the following problem:

\((**) \) If a continuum \(X \) has property \([K]\), is it true that \(X \times I \) has property \([K]\)?

Then we have:

\((3.3) \) Corollary. If problem \((**) \) has an affirmative answer, then problem \((*) \) has an affirmative answer.

\textit{Proof.} Suppose that \((**) \) has an affirmative answer. Then \(X \times I^n \) has property \([K]\). Now we show that \(X \times Q \) has property \([K]\). Let \(\varepsilon > 0 \). Consider the projection \(p_n: X \times Q \rightarrow X \times I^n \). For some integer \(n \), \(p_n \) is a monotone and \(\varepsilon/2 \)-mapping. Choose \(\delta > 0 \) such that if \(A \) is a subset of \(X \times I^n \) with \(\operatorname{diam} A < \delta \), then \(\operatorname{diam} p_n^{-1}(A) < \varepsilon/2 \). Then there is \(\delta' > 0 \) such that if \(w, w' \in X \times I^n \), \(d(w, w') < \delta' \), \(A \in C(X \times I^n) \), and \(w \in A \), then there is \(B \in C(X \times I^n) \) such that \(w' \in B \) and \(d_H(A, B) < \delta \). Choose \(\delta'' > 0 \) such that if \(z, z' \in X \times Q \) and \(d(z, z') < \delta'' \), then \(d(p_n(z), p_n(z')) < \delta' \). Let \(z, z' \in X \times Q \), \(d(z, z') < \delta'' \),
and $z \in A \in C(X \times Q)$. Then there is $B' \in C(X \times I^n)$ such that $p_n(z') \in B'$
and $d_{H}(p_n(A), B') < \delta'$. Let $B = p_n^{-1}(B')$. Then $z' \in B$ and $B \in C(X \times Q)$. We also see that

$$d_{H}(A, B) = d_{H}(A, p_n^{-1}(B'))$$

$$\leq d_{H}(A, p_n^{-1}(p_n(A))) + d_{H}(p_n^{-1}(p_n(A)), p_n^{-1}(B'))$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Hence $X \times Q$ has property [K]. As in the proof of (2.1), $\Lambda(X)$ can be embedded in the Hilbert cube Q. Consider the embedding $i: \Lambda(X) \to X \times Q$ defined by $i(\alpha) = (\alpha(0), \alpha)$. Then the map G satisfies $G \cdot i = \text{id}$ (see the proof of (2.1)). By [14, (2.9)], $\Lambda(X)$ has property [K]. Then $T: \Lambda(X) \times [0, \omega(X)] \to C(X)$, which is defined by $T(\alpha, t) = \alpha \cap \omega^{-1}(t)$, is monotone. By [14, (4.3)], $C(X)$ has property [K]. Similarly, we obtain that $\omega^{-1}(t)$ has property [K] for any Whitney map ω for $C(X)$.

(3.4) Problem. If X has property [K], is it true that $X \times I$ has property [K]?

It is known that there is a continuum X such that X has property [K], but $X \times X$ does not have property [K] (see [14, (4.7)]).

References

Faculty of Integrated Arts and Sciences, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730, Japan