A multivariate generalization of a theorem of R. H. Farrell

Author:
D. Plachky

Journal:
Proc. Amer. Math. Soc. **113** (1991), 163-165

MSC:
Primary 28A60; Secondary 28A25

MathSciNet review:
1052873

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote a finite measure space and -measurable functions, . Then the algebra of functions generated by is a dense subset of if and only if for any there exists some , such that is valid. In particular, this condition is satisfied if is a Blackwell space and is in addition one-to-one.

**[1]**R. G. Douglas,*On extremal measures and subspace density. II*, Proc. Amer. Math. Soc.**17**(1966), 1363–1365. MR**0205053**, 10.1090/S0002-9939-1966-0205053-1**[2]**R. H. Farrell,*Dense algebras of functions in 𝐿_{𝑝}*, Proc. Amer. Math. Soc.**13**(1962), 324–328. MR**0142009**, 10.1090/S0002-9939-1962-0142009-8**[3]**Paul-A. Meyer,*Probability and potentials*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR**0205288****[4]**Detlef Plachky,*Extremal and monogenic additive set functions*, Proc. Amer. Math. Soc.**54**(1976), 193–196. MR**0419711**, 10.1090/S0002-9939-1976-0419711-3**[5]**M. M. Rao,*Measure theory and integration*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR**891879**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A60,
28A25

Retrieve articles in all journals with MSC: 28A60, 28A25

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1991-1052873-4

Article copyright:
© Copyright 1991
American Mathematical Society