ON THE WEIGHTED ESTIMATE OF THE SOLUTION ASSOCIATED WITH THE SCHRODINGER EQUATION

SILEI WANG

(Communicated by J. Marshall Ash)

Abstract. Let \(u(x, t) \) be the solution of the Schrödinger equation with initial data \(f \) in the Sobolev space \(H^{-1+a/2}(\mathbb{R}^n) \) with \(a > 1 \). This paper shows that the weighted inequality
\[
\int_{\mathbb{R}^n} \int_{\mathbb{R}} |u(x, t)|^q dt (1 + |x|)^{-a} \, dx < C \|f\|_{H^{-1+a/2}(\mathbb{R}^n)}
\]
is false. Another improved weighted inequality is proved for the general case.

1

Let \(f \) belong to the Schwartz space \(\mathcal{S}(\mathbb{R}^n) \) and set
\[
(1.1) \quad u(x, t) = \int_{\mathbb{R}^n} e^{-ix \cdot \varepsilon} e^{it|\varepsilon|^2} \hat{f}(\varepsilon) \, d\varepsilon, \quad x \in \mathbb{R}^n, \; t \in \mathbb{R}.
\]
Here \(\hat{f} \) denotes the Fourier transform of \(f \), defined by
\[
\hat{f}(\varepsilon) = \int_{\mathbb{R}^n} e^{-ix \cdot \varepsilon} f(x) \, dx.
\]
It is well known that \(u(x, t) \) is the solution of the Schrödinger equation with the initial data \(f \):
\[
\Delta u = i\partial u/\partial t, \quad t > 0, \; u(x, 0) = f(x).
\]

For \(s \in \mathbb{R} \) we also introduce Sobolev spaces \(H^s(\mathbb{R}^n) \) by setting
\[
H^s(\mathbb{R}^n) = \left\{ f + \mathcal{S}'(\mathbb{R}^n) : \|f\|_{H^s(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} (1 + |x|^2)^{s/2} |\hat{f}(x)|^2 \, dx \right)^{1/2} < \infty \right\}.
\]

In [V] the following result of maximal operator \(u^*(x) = \sup_{|t| > 0} |u(x, t)| \) was established for functions in the Sobolev space \(H^{2a-1+a/2}(\mathbb{R}^n) \).

Theorem A [V, Theorem 2]. Let \(f \) be in \(H^s(\mathbb{R}^n) \) with \(s > a/2 \) and \(a > 1 \). Then
\[
(1.2) \quad \left(\int |u^*(x)|^2 \frac{dx}{(1 + |x|)^a} \right)^{1/2} \leq C \|f\|_{H^s(\mathbb{R}^n)}.
\]
In a crucial way, the proof of this theorem uses the following classical Sobolev inequalities which states that the $H^\gamma (\mathbb{R})$ with $\gamma > 1/2$ is embedded in $L^\infty (\mathbb{R})$ and the following:

Theorem B [V, Theorem 3]. If $\alpha \geq 0$ and $a > 1$, then

\[
(1.3) \quad \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}} |\frac{\partial^\alpha u(x, t)}{\partial t^\alpha}|^2 \, dt \frac{dx}{(1 + |x|)^\alpha} \right)^{1/2} \leq C \|f\|_{H^{2\alpha-1+\alpha/2}(\mathbb{R}^n)}.
\]

But the proof of Theorem B is slightly in error with $\alpha = 0$, thus placing the validity of Theorem B in doubt when $\alpha = 0$. The purpose of this note is to show by counterexample, that estimates (1.3) cannot be expected to hold true for $\alpha = 0$.

Theorem 1. The inequality in Theorem B with $\alpha = 0$, i.e.

\[
(1.4) \quad \int_{\mathbb{R}^n} \int_{\mathbb{R}} |u(x, t)|^2 \, dt \frac{dx}{(1 + |x|)^a} \leq C \|f\|^2_{H^{-1+a/2}(\mathbb{R}^n)}
\]

does not hold for some $f \in H^{-1+a/2}(\mathbb{R}^n)$. In fact, for $n \geq 2$ there exists an $f_0 \in H^{-1+a/2}(\mathbb{R}^n)$ so that

\[
(1.5) \quad \int_{\mathbb{R}^n} \int_{\mathbb{R}} |u(x, t)|^2 \, dt \frac{dx}{(1 + |x|)^a} = \infty.
\]

For $n = 1$, the corresponding inequality

\[
(1.6) \quad \left\| \left(\int_{-\infty}^{\infty} |u(x, t)|^2 \, dt \right)^{1/2} \right\|_{L^\infty(\mathbb{R})} \leq C \|f\|_{H^{-1}(\mathbb{R})}
\]

is also false with some $f \in H^{-1}(\mathbb{R})$. Indeed, there is also an $f_0 \in H^{-1}(\mathbb{R})$ so that (1.6) fails to be true.

It may be interesting to determine the source of the error in Theorem B. The proof of Theorem B makes use of the following lemma from [V]:

Lemma. Let g be in $L^2(S^{n-1})$. Then if $a > 1$, \(a > 1 \),

\[
(1.7) \quad \left(\int_{\mathbb{R}^n} \left| \int_{S^{n-1}} g(\varepsilon) e^{ix \cdot \varepsilon} d\sigma(\varepsilon) \right|^2 \frac{dx}{(1 + |x|)^a} \right)^{1/2} \leq C \left(\int_{S^{n-1}} |g(\varepsilon)|^2 d\sigma(\varepsilon) \right)^{1/2},
\]

S^{n-1} being the unit sphere in \mathbb{R}^n and $d\sigma(\varepsilon)$ the Lebesgue measure on S^{n-1}.

This lemma was proved in [V] only for $n = 2$ which is heavily dependent on geometry. The second purpose of this note is to give a proof in the general case. In fact, the following stronger result can be established.

Theorem 2. Let g be in $L^2(S^{n-1})$. Then if $a > 1$, we have

\[
(1.8) \quad \left(\int_{\mathbb{R}^n} \left| \int_{S^{n-1}} g(\varepsilon) e^{ix \cdot \varepsilon} d\sigma(\varepsilon) \right|^2 \frac{dx}{|x|^a} \right)^{1/2} \leq C_a \left(\int_{S^{n-1}} |g(\varepsilon)|^2 d\sigma(\varepsilon) \right)^{1/2}.
\]
Theorem 2 leads to the conclusion that the estimate from line 24 to line 25 is wrong for $\alpha = 0$ in the proof of Theorem B. (See [V, p. 875].) Thus, it would not seem proper to prove Theorem A by using (1.3) for $\alpha = 0$.

We shall first give a proof of Theorem 1 in §2. The proof of Theorem 2 is postponed to §3. The constants C need not be the same at each occurrence.

2. PROOF OF THEOREM 1

First suppose that $n \geq 2$. Let $f_0(x) = f_0(|x|)$ be a radial function that belongs to $L^2(\mathbb{R}^2)$ and its Fourier transform

$$\hat{f}_0(|x|) = |x|^{-\sigma-n/2+1}(1 + |x|)^{-\beta},$$

where

$$a/2 < \sigma < 1$$

and

$$n < \beta.$$

Then it is not difficult to verify that $f_0 \in L^2(\mathbb{R}^n)$ and $f_0 \in H^{-1+a/2}(\mathbb{R}^n)$, since

$$\int_{\mathbb{R}^n} |f_0(x)|^2 dx = \int_{\mathbb{R}^n} |\hat{f}_0(x)|^2 dx = \int_{\mathbb{R}^n} |x|^{-2\sigma-n+2}(1 + |x|)^{-2\beta} dx < +\infty$$

and

$$\int_{\mathbb{R}^n} (1 + |x|^2)^{-1+a/2} |\hat{f}_0(x)|^2 dx$$

$$= \int_{\mathbb{R}^n} (1 + |x|^2)^{-1+a/2} |x|^{-2\sigma-n+2}(1 + |x|)^{-2\beta} dx < +\infty$$

given conditions (2.1) and (2.2).

On the other hand, with a simple change of variable, by (1.1) we get the following representation of $u(x, t)$ in polar coordinates

$$u(x, t) = \frac{1}{2} \int_0^\infty e^{ist} s^{(n-2)/2} \int_{s^{-1}}^{s} \hat{f}_0(s^{1/2} e) e^{is^{1/2} x^s} d\sigma(e) ds.$$

Using Plancherel’s theorem in the t variable, it follows that

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}} |u(x, t)|^2 dt \frac{dx}{(1 + |x|)^a}$$

$$= \frac{1}{4} \int_{\mathbb{R}^n} \int_0^\infty s^{(n-2)/2} \int_{s^{-1}}^{s} \hat{f}_0(s^{1/2} e) e^{is^{1/2} x^s} d\sigma(e) \left| \int_{s^{-1}}^{s} \hat{f}_0(s^{1/2} e) e^{is^{1/2} x^s} d\sigma(e) \right|^2 ds \frac{dx}{(1 + |x|)^a}$$

$$= \frac{1}{4} \int_{\mathbb{R}^n} \int_0^\infty s^{(n-2)/2} \int_{s^{-1}}^{s} e^{is^{1/2} x^s} d\sigma(e) \left| \int_{s^{-1}}^{s} e^{is^{1/2} x^s} d\sigma(e) \right|^2 ds \frac{dx}{(1 + |x|)^a}$$

$$= \frac{(2\pi)^n}{4} \int_{\mathbb{R}^n} \int_0^\infty s^{n-2} |\hat{f}_0(s^{1/2})|^2 \left| \frac{f_{(n-2)/2}(s^{1/2}|x|)}{|x|^{n-2}} \right|^2 ds \frac{dx}{(1 + |x|)^a}.$$
In the last equality we used the fact that [SW, p. 154]

$$\int_{S^{n-1}} e^{ix\varepsilon} d\sigma(\varepsilon) = (2\pi)^{n/2} J_{(n-2)/2}(\|x\|)\|x\|^{(n-2)/2},$$

where $J_k(x)$ is Bessel’s function of order k. Using the expression for $f_0, we get from (2.3) that

$$\int_{S^{n-1}} |u(x, t)|^2 dt \int_{S^{n-1}} |x|^a$$

$$= c_n \int_0^{\infty} s^{n/2-2} |\hat{f}_0(s^{1/2})|^2 \int_0^{\infty} |J_{(n-2)/2}(\gamma)|^2 \frac{\gamma d\gamma}{(1 + \gamma/\sqrt{s})^a} ds$$

$$\geq c_n \int_1^{\infty} s^{n/2-2+a/2} |\hat{f}_0(s^{1/2})|^2 \int_1^{\infty} |J_{(n-2)/2}(\gamma)|^2 \gamma^{-(a-1)} d\gamma ds$$

$$= c_n \int_1^{\infty} |J_{(n-2)/2}(\gamma)|^2 \gamma^{-(a-1)} d\gamma \cdot \int_0^{1} s^{n/2-2+a/2} |\hat{f}_0(s^{1/2})|^2, ds = +\infty,$$

since the last integral

$$\int_0^{1} s^{n/2-2+a/2} |\hat{f}_0(s^{1/2})|^2 ds = \int_0^{1} s^{-1+a/2-\sigma} (1 + s^{1/2})^{-2\beta} ds = +\infty$$
given condition (2.1). Thus the proof of the first part of Theorem 1 is complete.

For $n = 1$ the corresponding inequality (1.6) is false with the following function $f_0 \in H^1(\mathbb{R})$:

$$\hat{f}_0(x) = |x|^{-\sigma} (1 + |x|)^{-\beta} \quad (0 < \sigma < 1/2, \, \sigma + \beta > 1/2)$$
can also be easily verified. We omit the detail.

3. Proof of Theorem 2

Let us develop $g(\varepsilon) \in L^2(S^{n-1})$ into a series of spherical harmonics

$$g(\varepsilon) \sim \sum_{k=0}^{\infty} a_k Y_k(\varepsilon) \quad (\varepsilon \in S^{n-1}),$$

where $Y_k(\varepsilon)$ is a spherical function of order k, i.e., the value on S^{n-1} of a homogeneous polynomial $P(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)$ satisfying Laplace’s equation $\Delta P = 0$. We may always normalize the $Y_k(\varepsilon)$ and assume that

$$\|Y_k\| = \left(\int_{S^{n-1}} |Y_k(\varepsilon)|^2 d\sigma(\varepsilon)/|S^{n-1}|\right)^{1/2} = 1,$$

$|S^{n-1}|$ being the Lebesgue measure of S^{n-1}. Thus the functions $Y_k(\varepsilon)$ form an orthonormal system on S^{n-1} and Bessel’s inequality gives

$$\left(\sum_{k=0}^{\infty} |a_k|^2\right)^{1/2} \leq \left(\int_{S^{n-1}} |g(\varepsilon)|^2 d\sigma(\varepsilon)\right)^{1/2}.$$
Our first step will be to replace the function \(g(\varepsilon) \) in (1.8) by the development (3.1) and prove the equation

\[
\int_{S^{n-1}} g(\varepsilon) e^{ix \cdot \varepsilon} d\sigma(\varepsilon) = \sum_{k=0}^{\infty} a_k \int_{S^{n-1}} Y_k(\varepsilon) \cdot e^{ix \cdot \varepsilon} d\sigma(\varepsilon).
\]

Since \(g \in L^2(S^{n-1}) \) and the development (3.1) converges to \(g \) over \(S^{n-1} \), (3.3) follows in norm \(L^2 \) by Schwarz' inequality.

Now we invoke the formulas \([AH, p. 572]\)

\[
\int_{S^{n-1}} Y_k(\varepsilon) e^{ix \cdot \varepsilon} d\sigma(\varepsilon) = (2\pi)^{\frac{n+1}{2}} i^k Y_k(x') \cdot J_{k+\lambda}(|x|)/|x|^\lambda \quad (\lambda = (n - 2)/2)
\]

and (3.3), so we get the equality as follows

\[
\left| \int_{S^{n-1}} g(\varepsilon) e^{ix \cdot \varepsilon} d\sigma(\varepsilon) \right|^2 = c_k \sum_{k, l=0}^{\infty} (-1)^l i^{k+l} a_k \overline{a_l} Y_k(x') \overline{Y_l(x')} \cdot J_{k+\lambda}(|x|)/|x|^{2\lambda},
\]

where \(x' = x/|x| \in S^{n-1} \). Thus, the left-hand side of (1.8) is equal to

\[
c_n \int_0^\infty \int_{S^{n-1}} \sum_{k, l=0}^{\infty} (-1)^l i^{k+l} a_k \overline{a_l} Y_k(x') \overline{Y_l(x')} d\sigma(x') J_{k+\lambda}(|x|) J_{l+\lambda}(|x|) |x|^{-2\lambda} \ d\gamma
\]

The last integral was evaluated in \([L, 13.4.2(3)]:\)

\[
\int_0^\infty t^{-d} J_\mu(bt) J_\nu(bt) \ dt = \frac{(b/2)^{d-1} \Gamma(\lambda) \Gamma(\frac{\mu+\nu-d+1}{2})}{2\Gamma(\frac{\nu-\mu+d+1}{2}) \Gamma\left(\frac{\nu+\mu+d+1}{2}\right) \Gamma\left(\frac{\mu-\nu+d+1}{2}\right)}
\]

under the conditions

\[
\text{Re}(\mu + \nu + 1) > \text{Re}(d) > 0, \quad b > 0.
\]

In our case the last integral in (3.4) is

\[
\int_0^\infty |J_{k+\lambda}(\gamma)|^2 \gamma^{1-a} d\gamma = \frac{1}{2^{a-1}} \frac{\Gamma(\frac{a}{2})}{\Gamma(\frac{a+\lambda}{2})} \frac{\Gamma(k+\frac{a}{2} - \frac{\lambda}{2})}{\Gamma(k+\frac{a}{2} - 1 + \frac{\lambda}{2})} \leq c/(k+(n-a)/2)^{a-1} \leq c/k^{a-1} \quad (k = 1, 2, \ldots).
\]

Then Theorem 2 follows from (3.2) to (3.5).
REFERENCES

DEPARTMENT OF MATHEMATICS, HANGZHO UNIVERSITY, HANGZHO 310028, CHINA