Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A full description of extreme points in $ C(\Omega,L\sp \phi(\mu))$


Author: Marek Wisła
Journal: Proc. Amer. Math. Soc. 113 (1991), 193-200
MSC: Primary 46E40; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9939-1991-1072351-6
MathSciNet review: 1072351
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {L^\varphi }(\mu )$ be an Orlicz space endowed with the Luxemburg norm. The main result of this paper reads as follows: $ f$ is an extreme point of the unit ball of the space of continuous functions from a compact Hausdorff space $ \Omega $ into $ {L^\varphi }(\mu )$ with the supremum norm if and only if the inverse image of the set of all extreme points of the unit ball of $ {L^\varphi }(\mu )$ under $ f$ is dense in $ \Omega $.


References [Enhancements On Off] (What's this?)

  • [1] R. M. Blumenthal, J. Lindenstrauss, and R. R. Phelps, Extreme operators into $ C(K)$, Pacific J. Math. 15 (1965), 747-756. MR 0209862 (35:758)
  • [2] A. Clausing and S. Papadopoulou, Stable convex sets and extreme operators, Math. Ann. 231 (1978), 193-200. MR 0467249 (57:7113)
  • [3] R. Engelking, General topology, Polish Scientific Publ., Warsaw, 1977. MR 0500780 (58:18316b)
  • [4] R. Grzaślewicz, Extreme points in $ C(K,{L^\varphi }(\mu ))$, Proc. Amer. Math. Soc. 98 (1986), 611-614. MR 861761 (87m:46079)
  • [5] R. Grzaślewicz, H. Hudzik, and W. Kurc, Extreme and exposed points in Orlicz spaces, Canad. J. Math. (to appear). MR 1176367 (93h:46033)
  • [6] A. J. Lazar, Affine functions on Simplexes and extreme operators, Israel J. Math. 5 (1967), 31-43. MR 0211246 (35:2128)
  • [7] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft, 1955. MR 0072440 (17:285a)
  • [8] E. Michael, Continuous selections I, Ann. of Math. (2) 63 (1956), 361-382. MR 0077107 (17:990e)
  • [9] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, New York, 1983. MR 724434 (85m:46028)
  • [10] W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus $ B$, Bull. Intern. Acad. Pol. Sér. A, Kraków (1932), 207-220.
  • [11] S. Papadopoulou, On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. MR 0450938 (56:9228)
  • [12] M. Sharir, A note on extreme elements in $ {A_0}(K,E)$, Proc. Amer. Math. Soc. 46 (1974), 244-246. MR 0374879 (51:11075)
  • [13] A. Suarez-Granero, Stable unit balls in Orlicz spaces, Proc. Amer. Math. Soc. 109 (1990), 97-104. MR 1000154 (90h:46056)
  • [14] D. Werner, Extreme points in function spaces, Proc. Amer. Math. Soc. 89 (1983), 598-600. MR 718980 (84m:46041)
  • [15] M. Wisla, Extreme points and stable unit balls in Orlicz sequence spaces, Arch. Math. (Basel) (to appear). MR 1100574 (92d:46018)
  • [16] Wu Congxin and Chen Shutao, Extreme points and rotundity of Musielak-Orlicz sequence spaces, J. Math. Res. Exposition 2 (1988), 195-200. MR 959844 (89k:46013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 46E30

Retrieve articles in all journals with MSC: 46E40, 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1072351-6
Keywords: Extreme points, vector valued functions, spaces of continuous functions, Orlicz spaces
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society