Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the existence of weakly $ n$-dimensional spaces


Authors: Jan van Mill and Roman Pol
Journal: Proc. Amer. Math. Soc. 113 (1991), 581-585
MSC: Primary 54F45; Secondary 54D45
MathSciNet review: 1056687
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using a certain method for constructing peculiar large-dimensional spaces in every compactum with sufficiently large dimension, we present for every $ n$ an easy example of a weakly $ n$-dimensional space.


References [Enhancements On Off] (What's this?)

  • [1] Ryszard Engelking, Dimension theory, North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Publishers, Warsaw, 1978. Translated from the Polish and revised by the author; North-Holland Mathematical Library, 19. MR 0482697
  • [2] A. V. Ivanov, An example concerning Mazurkiewicz’ theorem, Seminar on General Topology, Moskov. Gos. Univ., Moscow, 1981, pp. 49–51 (Russian). MR 656948
  • [3] Bronisław Knaster, Sur les coupures biconnexes des espaces euclidiens de dimension 𝑛>1 arbitraire, Rec. Math. [Mat. Sbornik] N.S. 19(61) (1946), 9–18 (Russian, with French summary). MR 0017520
  • [4] J. Krasinkiewicz, Essential mappings onto products of manifolds, Geometric and algebraic topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 377–406. MR 925878
  • [5] J. Krasinkiewicz, Homotopy separators and mappings into cubes, Fund. Math. 131 (1988), no. 2, 149–154. MR 974664
  • [6] John Kulesza, The dimension of products of complete separable metric spaces, Fund. Math. 135 (1990), no. 1, 49–54. MR 1074648
  • [7] K. Kuratowski, Topology II, Academic Press, New York, 1968.
  • [8] A. Lelek, Dimension inequalities for unions and mappings of separable metric spaces, Colloq. Math. 23 (1971), 69–91. MR 0322829
  • [9] S. Mazurkiewicz, Sur les problèmes $ \kappa $ et $ \lambda $ de Urysohn, Fund. Math. 10 (1927), 311-319.
  • [10] -, Sur les ensembles de dimension faible, Fund. Math. 13 (1929), 210-217.
  • 1. J. van Mill, Infinite-dimensional topology, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction. MR 977744
  • [12] Jun-iti Nagata, Modern dimension theory, Revised edition, Sigma Series in Pure Mathematics, vol. 2, Heldermann Verlag, Berlin, 1983. MR 715431
  • [13] Roman Pol, Countable-dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986), no. 1, 255–268. MR 849478, 10.1090/S0002-9947-1986-0849478-7
  • [14] Leonard R. Rubin, R. M. Schori, and John J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), no. 1, 93–102. MR 519716
  • [15] W. Serpiński, Sur les ensembles connexes et non connexes, Fund. Math. 2 (1921), 81-95.
  • [16] B. Tomaszewski, On weakly 𝑛-dimensional spaces, Fund. Math. 103 (1979), no. 1, 1–8. MR 535830
  • [17] A. V. Zarelua, Hereditarily infinite-dimensional spaces, Theory of sets and topology (in honour of Felix Hausdorff, 1868–1942), VEB Deutsch. Verlag Wissensch., Berlin, 1972, pp. 509–525 (Russian). MR 0343252

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 54D45

Retrieve articles in all journals with MSC: 54F45, 54D45


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1991-1056687-0
Keywords: Mazurkiewicz's technique, dimension, essential family, weakly $ n$-dimensional
Article copyright: © Copyright 1991 American Mathematical Society