Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Determinant expression of Selberg zeta functions. III


Author: Shin-ya Koyama
Journal: Proc. Amer. Math. Soc. 113 (1991), 303-311
MSC: Primary 11F72
DOI: https://doi.org/10.1090/S0002-9939-1991-1062391-5
MathSciNet review: 1062391
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We will prove that for $ \operatorname{PSL(2},{\mathbf{R}})$ and its cofinite subgroup, the Selberg zeta function is expressed by the determinant of the Laplacian. We will also give an explicit calculation in case of congruence subgroups, and deduce that the part of the determinant of the Laplacian composed of the continuous spectrum is expressed by Dirichlet $ L$-functions.


References [Enhancements On Off] (What's this?)

  • [1] E. W. Barnes, The genesis of the double gamma functions, Proc. London Math. Soc. 31 (1899), 358-381.
  • [2] -, The theory of the $ G$-function, Quart. J. Math. 31 (1900), 264-314.
  • [3] E. D'Hoker and D. H. Phong, Multiloop amplitudes for the bosonic Polyakov string, Nucl. Phys. B269 (1986), 205-234. MR 838673 (88d:81053)
  • [4] -, On determinants of Laplacians on Riemann surfaces, Comm. Math. Phys. 104 (1986), 537-545. MR 841668 (87i:58159)
  • [5] I. Efrat, Determinant of Laplacians on surfaces of finite volume, Comm. Math. Phys. 119 (1988), 443-451. MR 969211 (90c:58184)
  • [6] J. Fischer, An approach to the Selberg trace formula via the Selberg zeta function, Lecture Notes in Math., vol. 1253, Springer-Verlag, Berlin and New York, 1987. MR 892317 (88f:11053)
  • [7] G. Gilbert, String theory path integral (genus two and higher), Nuclear Phys. B277 (1986), 102-124. MR 858665 (87j:81200)
  • [8] M. N. Huxley, Scattering matrices for congruence subgroups, Modular Forms (R. A. Rankin, ed.), Ellis Horwood, Chichester, England, 1984. MR 803366 (87e:11072)
  • [9] S. Koyama, The Selberg zeta function and the determinant of the Laplacians, Proc. Japan Acad. 65A (1989), 280-283. MR 1030200 (90m:11082)
  • [10] -, Determinant expression of Selberg zeta functions (II), Trans. Amer. Math. Soc. (to appear). MR 1141858 (93g:11053)
  • [11] -, Determinant expression of Selberg zeta functions (I), Trans. Amer. Math. Soc. 324 (1991), 149-168. MR 1041049 (91h:11043)
  • [12] N. Kurokawa, Parabolic components of zeta functions, Proc. Japan Acad. 64A (1988), 21-24. MR 953756 (89m:11052)
  • [13] S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242-256. MR 0031145 (11:108b)
  • [14] P. Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987), 113-120. MR 885573 (89e:58116)
  • [15] A. Voros, Spectral functions, special functions, and the Selberg zeta function, Comm. Math. Phys. 110 (1987), 439-465. MR 891947 (89b:58173)
  • [16] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, MA, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11F72

Retrieve articles in all journals with MSC: 11F72


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1062391-5
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society