Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cofinality in normal almost compact spaces


Authors: W. Fleissner, J. Kulesza and R. Levy
Journal: Proc. Amer. Math. Soc. 113 (1991), 503-511
MSC: Primary 54D30
DOI: https://doi.org/10.1090/S0002-9939-1991-1072087-1
MathSciNet review: 1072087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A regular space is said to be a NAC space if, given any pair of disjoint closed subsets, one of them is compact. The standard example of a noncompact NAC space is an ordinal space of uncountable cofinality. The cofinality of an arbitrary noncompact NAC space is defined, and the extent to which cofinality in NAC spaces behaves like cofinality of ordinal spaces is discussed.


References [Enhancements On Off] (What's this?)

  • [BDFN] Z. Balogh, A. Dow, D. Fremlin, and P. Nyikos, Countable tightness and proper forcing, Bull. Amer. Math. Soc. 19 (1988), 295-298. MR 940491 (89e:03088)
  • [dC] P. de Caux, A collectionwise normal, weakly $ \theta $-refinable Dowker space which is neither irreducible nor realcompact, Topology Proc. 1 (1976), 67-77. MR 0448322 (56:6629)
  • [vD1] E. K. van Douwen, A basically disconnected normal space $ \Phi $ such that $ \left\vert {\beta \Phi \backslash \Phi } \right\vert = 1$, Canad. J. Math. 31 (1979), 911-914. MR 546947 (81j:54057)
  • [vD2] -, The integers and topology, Handbook of Set-theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111-167. MR 776619 (85k:54001)
  • [E] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989. MR 1039321 (91c:54001)
  • [FL1] W. Fleissner and R. Levy, Ordered spaces all of whose continuous images are normal, Proc. Amer. Math. Soc. 105 (1989), 231-235. MR 973846 (90b:54021)
  • [FL2] -, Stone-Čech remainders that make continuous images normal, Proc. Amer. Math. Soc. 106 (1989), 839-842. MR 963571 (89k:54054)
  • [F] D. Fremlin, Perfect preimages of $ {\omega _1}$ and the PFA, Topology Appl. 29 (1988), 151-166. MR 949366 (89i:03096)
  • [FR] S. Franklin and M. Rajagopalan, Some examples in topology, Trans. Amer. Math. Soc. 155 (1971), 305-314. MR 0283742 (44:972)
  • [O] A. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516. MR 0438292 (55:11210)
  • [P] T. Przymusinski, Products of normal spaces, Handbook of Set-theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 781-826. MR 776637 (86c:54007)
  • [R] M. E. Rudin, A normal space $ X$ for which $ X \times I$ is not normal, Fund. Math. 73 (1971), 179-186. MR 0293583 (45:2660)
  • [T] S. Todorčević, Partition problems in topology, Contemp. Math., vol. 84, 1989. MR 980949 (90d:04001)
  • [W] R. Walker, The Stone-Čech compactification, Springer-Verlag, New York, 1974. MR 0380698 (52:1595)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D30

Retrieve articles in all journals with MSC: 54D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1072087-1
Keywords: NAC space, cofinality
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society