Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



L'espace des fonctions continues d'un espace métrique dénombrable

Author: Robert Cauty
Journal: Proc. Amer. Math. Soc. 113 (1991), 493-501
MSC: Primary 54C35; Secondary 57N17
MathSciNet review: 1075943
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that, for any countable nondiscrete metric space $ X$, the space of continuous real-valued functions on $ X$, with the topology of pointwise convergence, and its subspace of bounded functions, are both homeomorphic to $ {\sigma _\omega }$, the countably infinite product of copies of $ l_f^2$.

References [Enhancements On Off] (What's this?)

  • [1] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313. MR 856522 (88f:57023)
  • [2] J. Dijkstra, T. Grilliot, D. Lutzer, and J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710. MR 792287 (87a:54018)
  • [3] C. Kuratowski, Topologie. II, 3e édition, PWN, Warszawa, 1961.
  • [4] J. van Mill, Topological equivalence of certain function spaces, Compositio Math. 63 (1987), 159-188. MR 906368 (89b:54020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C35, 57N17

Retrieve articles in all journals with MSC: 54C35, 57N17

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society