Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Continuous selections of solution sets to evolution equations


Author: Vasile Staicu
Journal: Proc. Amer. Math. Soc. 113 (1991), 403-413
MSC: Primary 49J24; Secondary 34A60, 47H04, 54C65
DOI: https://doi.org/10.1090/S0002-9939-1991-1076580-7
MathSciNet review: 1076580
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of a continuous selection of the multivalued map $ \xi \to \mathcal{T}(\xi )$, where $ \mathcal{T}(\xi )$ is the set of all weak (resp. mild) solutions of the Cauchy problem

$\displaystyle \dot x(t) \in Ax(t) + F(t,x(t)),\quad x(0) = \xi $

, assuming that $ F$ is Lipschitzian with respect to $ x$ and $ - A$ is a maximal monotone map (resp. $ A$ is the infinitesimal generator of a $ {C_0}$-semigroup). We also establish an analog of Michael's theorem for the solution sets of the Cauchy problem $ \dot x(t) \in F(t,x(t)),\;x(0) = \xi $.

References [Enhancements On Off] (What's this?)

  • [1] J. P. Aubin and A. Cellina, Differential inclusions, Springer-Verlag, Berlin, 1984. MR 755330 (85j:49010)
  • [2] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. MR 947921 (89j:54021)
  • [3] A. Bressan, A. Cellina, and A. Fryszkowski, A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc. 384 (1991), 413-418. MR 1045587 (91i:47076)
  • [4] H. Brezis, Operateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.
  • [5] A. Cellina, On the set of solutions to Lipschitzian differential inclusions, Differential Integral Equations 1 (1988), 495-500. MR 945823 (89d:34023)
  • [6] A. Cellina and A. Ornelas, Representation of the attainable set for Lipschitzian differential inclusions, Rocky Mountain J. Math. (to appear). MR 1159946 (93b:34028)
  • [7] R. M. Colombo, A. Fryszkowski, T. Rzezuchowski, and V. Staicu, Continuous selection of solutions sets of Lipschitzian differential inclusions, Funkcial. Ekvac. (to appear). MR 1130468 (93i:34022)
  • [8] F. S. De Blasi and G. Pianigiani, Non-convex valued differential inclusions in Banach spaces, J. Math. Anal. Appl. (to appear). MR 1112329 (92h:34037)
  • [9] A. F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control Optim. 5 (1967), 609-621. MR 0220995 (36:4047)
  • [10] H. Frankowska, A priori estimates for operational differential inclusions, J. Differential Equations 84 (1990), 100-128. MR 1042661 (91b:34099)
  • [11] F. Hiai and H. Umegaki, Integrals, conditions expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1971), 149-182. MR 0507504 (58:22463)
  • [12] E. Michael, Continuous selections. I, Ann. of Math. 63 (1956), 361-382. MR 0077107 (17:990e)
  • [13] A. A. Tolstonogov, On the properties of solutions of evolutions equations of subdifferential type in a Hilbert space, Proceedings of EQUADIFF 1989, Praha.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49J24, 34A60, 47H04, 54C65

Retrieve articles in all journals with MSC: 49J24, 34A60, 47H04, 54C65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1076580-7
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society