Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Unknotting number one knots are prime: a new proof


Author: Xingru Zhang
Journal: Proc. Amer. Math. Soc. 113 (1991), 611-612
MSC: Primary 57M25
DOI: https://doi.org/10.1090/S0002-9939-1991-1076582-0
MathSciNet review: 1076582
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An alternative proof for unknotting number one knots being prime is given.


References [Enhancements On Off] (What's this?)

  • [GL] C. McA. Gordon and J. Luecke, Only integral Dehn surgery can yield reducible manifolds, Math. Proc. Cambridge Philos. Soc. 102 (1987), 97-101. MR 886439 (89a:57003)
  • [KT] P. K. Kim and J. L. Tollefson, Splitting the PL involutions of nonprime $ 3$-manifolds, Michigan Math. J. 27 (1980), 259-274. MR 584691 (81m:57007)
  • [L] W. B. R. Lickorish, The unknotting number of a classical knot, Contemp. Math., vol. 44, 1985, pp. 117-121. MR 813107 (87a:57012)
  • [S] M. G. Scharlemann, Unknotting number one knots are prime, Invent. Math. 82 (1985), 37-55. MR 808108 (86m:57010)
  • [ST] M. G. Scharlemann and A. Thompson, Unknotting number, genus, and companion tori, Math. Ann. 280 (1988), 191-205. MR 929535 (89d:57008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25

Retrieve articles in all journals with MSC: 57M25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1076582-0
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society