Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

There is a $ Q$-set space in ZFC


Author: Zoltán T. Balogh
Journal: Proc. Amer. Math. Soc. 113 (1991), 557-561
MSC: Primary 54G20; Secondary 54H05
DOI: https://doi.org/10.1090/S0002-9939-1991-1077786-3
MathSciNet review: 1077786
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that there is a regular $ {T_1}$-space whose every subset is a $ {G_\delta }$-set and yet the space is not $ \sigma $-discrete.


References [Enhancements On Off] (What's this?)

  • [1 Z] Balogh and H. Junnila, Totally analytic spaces under $ V = L$, Proc. Amer. Math. Soc. 87 (1983), 519-527. MR 684650 (84j:54026)
  • [2] W. G. Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294-298. MR 0362240 (50:14682)
  • [3] W. G. Fleissner, R. W. Hansell, and H. Junnila, PMEA implies Proposition P, Topology Appl. 13 (1982), 255-262. MR 651508 (83f:54042)
  • [4] R. W. Hansell, Some consequences of $ (V = L)$ in the theory of analytic sets, Proc. Amer. Math. Soc. 80 (1980), 311-319. MR 577766 (81j:54058)
  • [5] H. Junnila, Some topological consequences of the product measure extension axiom, Fund. Math. 115 (1983), 1-8. MR 690665 (85e:54021)
  • [6] K. Kunen, Set theory, North-Holland, Amsterdam, 1980. MR 597342 (82f:03001)
  • [7] A. W. Miller, Special subsets of the real line, Handbook of Set-Theoretic Topology, (K. Kunen and J. Vaughan, eds.) North Holland, Amsterdam, 1984. MR 776619 (85k:54001)
  • [8] G. M. Reed, On normality and countable paracompactness, Fund. Math. 110 (1980), 145-152. MR 600588 (82d:54033)
  • [9] M. E. Rudin, Two problems of Dowker, Proc. Amer. Math. Soc. 91 (1984), 155-158. MR 735583 (85i:54022b)
  • [10] -, A topology on $ c$ which yields a $ {T_3}$ non-$ \sigma $-discrete space in which every subset is a $ {G_\delta }$ set, handwritten manuscript.
  • [11] S. Shelah, Proper forcing, Lecture Notes in Math. vol. 940, Springier-Verlag, New York, 1982. MR 675955 (84h:03002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54G20, 54H05

Retrieve articles in all journals with MSC: 54G20, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1077786-3
Keywords: $ {G_\delta }$-set, $ \sigma $-discrete left-separated, elementary submodel
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society