Asymptotic periodicity of solutions to a class of neutral functional-differential equations

Author:
Jian Hong Wu

Journal:
Proc. Amer. Math. Soc. **113** (1991), 355-363

MSC:
Primary 34K15; Secondary 34K20

DOI:
https://doi.org/10.1090/S0002-9939-1991-1079900-2

MathSciNet review:
1079900

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we extend a convergence result due to Takáč to continuous maps satisfying certain monotonicity properties. Applying this extension to the Poincaré map associated with the neutral equation

**[1]**O. Arino and E. Haourgui,*On the asymptotic behavior of solutions of some delay differential systems which have a first integral*, J. Math. Anal. Appl.**122**(1987), 36-46. MR**874957 (88b:34115)****[2]**O. Arino and P. Seguier,*About the behavior at infinity of solutions of*, J. Math. Anal. Appl.**96**(1983), 420-436. MR**719326 (84m:34107)****[3]**F. Atkinson and J. Haddock,*Criteria for asymptotic constancy of solutions of functional differential equations*, J. Math. Anal. Appl.**91**(1983), 410-423. MR**690880 (84f:34096)****[4]**F. Atkinson, J. Haddock, and O. Staffans,*Integral inequalities and exponential convergence of differential equations with bounded delay*, Ordinary and Partial Differential Equations (W. Everitt and B. Sleeman, eds.), Lecture Notes in Math., Springer-Verlag, New York, 1982, pp. 56-68. MR**693101 (84g:34123)****[5]**K. L. Cooke and J. L. Kaplan,*A periodicity threshold theorem for epidemic and population growth*, Math. Biosci.**31**(1976), 87-104. MR**0682251 (58:33129)****[6]**K. L. Cooke and J. Yorke,*Some equations modeling growth process and gonorrhea epidemics*, Math. Biosci.**16**(1973), 75-107. MR**0312923 (47:1478)****[7]**I. Györi,*Connections between compartmental systems with pipes and integrodifferential equations*, Math. Model.**7**(1986), 1215-1238. MR**877750 (89c:92020)****[8]**J. R. Haddock and J. Terjeki,*Liapunov-Razumikhin functions and invariance principle for functional differential equations*, J. Differential Equations**48**(1983), 95-122. MR**692846 (84f:34104)****[9]**J. R. Haddock, T. Krisztin, and J. Wu,*Asymptotic equivalence of neutral equations and infinite delay equations*, Nonlinear Anal. TMA**14**(1990), 369-377. MR**1040012 (91b:34134)****[10]**J. K. Hale,*Theory of functional differential equations*, Springer-Verlag, New York, 1977. MR**0508721 (58:22904)****[11]**M. Hirsch,*Attractors for discrete-time monotone dynamical systems in strongly ordered spaces*, Geometry and Topology, Lecture Notes in Math., vol. 1167, Springer-Verlag, Berlin, Heidelberg, and New York, 1985. MR**827267 (87e:58134)****[12]**M. Hirsch,*Stability and convergence in strongly monotone dynamical systems*, J. Reine Angew. Math.**383**(1988), 1-53. MR**921986 (89c:58108)****[13]**J. K. Kaplan, M. Sorg, and J. Yorke,*Solutions of**have limits when**is an order relation*, Nonlinear Anal. TMA**3**(1979), 53-58. MR**520471 (80b:34088)****[14]**H. Smith,*Periodic solutions of periodic competitive and cooperative systems*, SIAM J. Math. Anal.**17**(1986), 1289-1318. MR**860914 (87m:34057)****[15]**O. J. Staffans,*A neutral FDE with stable**-operator is retarded*, J. Differential Equations**49**(1983), 208-217. MR**708643 (85j:34144)****[16]**P. Takáč,*Convergence to equilibrium on invariant**-hypersurface for strongly increasing discrete-time semigroup*, preprint, 1989.**[17]**J. Wu,*Convergence of monotone dynamical systems with minimal equilibria*, Proc. Amer. Math. Soc.**106**(1989), 907-911. MR**1004632 (90j:58130)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34K15,
34K20

Retrieve articles in all journals with MSC: 34K15, 34K20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1079900-2

Keywords:
Asymptotic periodicity,
neutral equations,
monotone systems

Article copyright:
© Copyright 1991
American Mathematical Society