Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the subgroup separability of generalized free products of nilpotent groups


Author: C. Y. Tang
Journal: Proc. Amer. Math. Soc. 113 (1991), 313-318
MSC: Primary 20E06; Secondary 20F18
DOI: https://doi.org/10.1090/S0002-9939-1991-1081099-3
MathSciNet review: 1081099
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that generalized free products of finitely generated nilpotent groups with cyclic amalgamation are subgroup separable


References [Enhancements On Off] (What's this?)

  • [1] R. B. J. T. Allenby and C. Y. Tang, The residual finiteness of some one-relator groups with torsion, J. Algebra 71 (1981), 132-140. MR 627429 (84e:20038a)
  • [2] G. Baumslag, On the residual finiteness of generalized free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 192-209. MR 0144949 (26:2489)
  • [3] A. M. Brunner, R. G. Burns, and D. Solitar, The subgroup separability of free products of two free groups with cyclic amalgamation, Contemp. Math., no. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 90-115. MR 767102 (86e:20033)
  • [4] R. G. Burns, A note on free groups, Proc. Amer. Math. Soc. 23 (1969), 14-17. MR 0252488 (40:5708)
  • [5] R. G. Burns, A. Karrass, and D. Solitar, A note on groups with separable finitely generated subgroups, Bull. Austral. Math. Soc. 36 (1987), 153-160. MR 897431 (88g:20057)
  • [6] J. L. Dyer, On the residual finiteness of generalized free products, Trans. Amer. Math. Soc. 133 (1968), 131-143. MR 0237649 (38:5930)
  • [7] M. Hall, Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432. MR 0032642 (11:322e)
  • [8] A. I. Mal'cev, On homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Ucen. Zap. 18 (1958), 49-60.
  • [9] G. A. Niblo, The subgroup separability of some amalgamated free products, Ph.D. thesis, Univ. of Liverpool, 1988.
  • [10] P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978), 555-565. MR 0494062 (58:12996)
  • [11] P. F. Stebe, Residual solvability of an equation in nilpotent groups, Proc. Amer. Math. Soc. 54 (1976), 57-58. MR 0387410 (52:8253)
  • [12] W. F. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math Soc. 6 (1982), 357-381. MR 648524 (83h:57019)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20E06, 20F18

Retrieve articles in all journals with MSC: 20E06, 20F18


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1081099-3
Keywords: Generalized free products, nilpotent groups, polycyclic groups, Hirsch length, residual finiteness, subgroup separability
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society