Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Random semilinear evolution equations in Banach spaces


Author: Dimitrios Kravvaritis
Journal: Proc. Amer. Math. Soc. 113 (1991), 715-722
MSC: Primary 47H20; Secondary 35R60, 47H15, 47H40, 58D25
DOI: https://doi.org/10.1090/S0002-9939-1991-1056680-8
MathSciNet review: 1056680
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the existence of mild solutions for random, semilinear evolution equations involving a random, linear, unbounded $ m$-dissipative operator and a random single valued or multivalued perturbation. Finally, an application to a random semilinear partial differential equation is given.


References [Enhancements On Off] (What's this?)

  • [1] E. Avgerinos and N. S. Papageorgiou, Random nonlinear evolution inclusions in reflexive Banach spaces, Proc. Amer. Math. Soc. 104 (1988), 293-299. MR 958086 (89i:60132)
  • [2] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1976. MR 0390843 (52:11666)
  • [3] G. Becus, Random generalized solutions to the heat equation, J. Math. Anal. Appl. 90 (1977), 93-102. MR 0442471 (56:853)
  • [4] A. Bharucha-Reid, Random integral equations, Academic Press, New York, 1972. MR 0443086 (56:1459)
  • [5] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273. MR 528687 (80f:60059)
  • [6] -, Random differential equations associated with accretive operators, J. Differential Equations 31 (1979), 139-154. MR 524822 (80b:60085)
  • [7] J. Kampé de Feriet, Random solutions of partial differential equations (Proc. 3rd Berkeley Sympos. Math. Stat. and Probab.), vol. III, Univ. of California Press, Berkeley, 1956, pp. 199-208. MR 0084927 (18:949d)
  • [8] D. Kravvaritis and N. Stavrakakis, Perturbations of maximal monotone random operators, Linear Alg. Appl. 84 (1986), 301-310. MR 872291 (88d:47066)
  • [9] N. S. Papageorgiou, Random differential inclusions in Banach spaces, J. Differential Equations 65 (1986), 287-303. MR 865064 (88d:60171)
  • [10] -, On measurable multifunctions with applications to random multivalued equations, Math. Japonica 32 (1987), 701-727. MR 914749 (89a:54019)
  • [11] -, Convergence theorems for Banach spaces valued integrable multifunctions, Internat. J. Math. Math. Sci. 10 (1987), 433-442. MR 896595 (88i:28019)
  • [12] N. Pavel, Differential equations, flow invariance and applications, Research Notes in Math., vol. 113, Pitman, London, 1984. MR 774954 (86g:58027)
  • [13] -, Nonlinear evolution operators and semigroups, Lecture Notes in Math., vol. 1260, Springer-Verlag, Berlin and New York, 1987. MR 900380 (88j:47087)
  • [14] A. Pazy, A class of semi-linear equations of evolution, Israel J. Math. 20 (1975), 23-36. MR 0374996 (51:11192)
  • [15] M.-F. Saint-Beuve, On the extension of von Neumann-Aumann's theorem, J. Funct. Anal. 17 (1974), 112-129. MR 0374364 (51:10564)
  • [16] T. Soong, Random differential equations in science and engineering, Academic Press, New York, 1973. MR 0451405 (56:9691)
  • [17] I. Vrabie, Nonlinear evolution equations: Existence via compactness (H. Brezis, M. Grandall, and F. Kappel, eds.), Pitman, New York, 1986, pp. 242-248. MR 876948 (88c:47133)
  • [18] -, The nonlinear version of Pazy's local existence theorem, Israel J. Math. 32 (1979), 221-235. MR 531265 (82a:47064)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H20, 35R60, 47H15, 47H40, 58D25

Retrieve articles in all journals with MSC: 47H20, 35R60, 47H15, 47H40, 58D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1056680-8
Keywords: $ m$-dissipative, mild solution, measurable multifunction, semigroup of contractions, random equations
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society