Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on eigenvalues of Hecke operators on Siegel modular forms of degree two


Author: Winfried Kohnen
Journal: Proc. Amer. Math. Soc. 113 (1991), 639-642
MSC: Primary 11F60; Secondary 11F46, 11F66
DOI: https://doi.org/10.1090/S0002-9939-1991-1068125-2
MathSciNet review: 1068125
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a cuspidal Hecke eigenform of even weight $ k$ on $ {\operatorname{Sp} _4}(\mathbb{Z})$ with associated eigenvalues $ {\lambda _m}(m \in \mathbb{N})$. Under the assumption that its first Fourier-Jacobi coefficient does not vanish it is proved that the abscissa of convergence of the Dirichlet series $ {\sum _{m \geq 1}}\left\vert {{\lambda _m}} \right\vert{m^{ - s}}$ is less than or equal to $ k$.


References [Enhancements On Off] (What's this?)

  • [1] A. N. Andrianov, Euler products corresponding to Siegel modular forms of genus 2, Russian Math. Surveys 29 (1974), 45-116. MR 0432552 (55:5540)
  • [2] M. Eichler and D. Zagier, The theory of Jacobi forms, Progr. Math., vol. 55, Birkhäuser, Boston, 1985. MR 781735 (86j:11043)
  • [3] S. A. Evdokimov, A characterization of the Maass space of Siegel cusp forms of degree 2, Math. USSR-Sb. 112 (1980), 133-142. (Russian) MR 575936 (82a:10028)
  • [4] E. Freitag, Siegelsche Modulfunktionen, Grundlehren Math. Wiss., vol. 254, Springer, New York, 1983. MR 871067 (88b:11027)
  • [5] V. A. Gritsenko, The action of modular operators on the Fourier-Jacobi coefficients of modular forms, Math. USSR-Sb. 47 (1984), 237-267.
  • [6] Y. Kitaoka, Fourier coefficients of Siegel cusp forms of degree two, Nagoya Math. J. 93 (1984), 149-171. MR 738922 (85i:11046)
  • [7] H. Klingen, Über Kernfunktionen für Jacobiformen und Siegelsche Modulformen, Math. Ann. 285 (1989), 405-416. MR 1019710 (90j:11037)
  • [8] W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math. 95 (1989), 541-558. MR 979364 (90b:11050)
  • [9] A. Krieg, Das Vertauschungsgesetz zwischen Hecke-Operatoren und dem Siegelschen $ \Phi $-Operator, Arch. Math. 46 (1986), 323-329. MR 847098 (87i:11064)
  • [10] T. Oda, On the poles of Andrianov $ L$-functions, Ann. of Math. (2) 256 (1981), 323-340. MR 626953 (83c:10034)
  • [11] N.-P. Skoruppa, Developments in the theory of Jacobi forms, Automorphic Functions and Their Applications (N. Kuznetsov and V. Bykovsky, eds.), The USSR Academy of Sciences, Khabavovsk, 1990, pp. 167-185. MR 1096975 (92e:11043)
  • [12] -, Computations of Siegel modular forms of genus two, preprint, MPI Bonn, 1990.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11F60, 11F46, 11F66

Retrieve articles in all journals with MSC: 11F60, 11F46, 11F66


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1068125-2
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society