Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Binary supersolvable matroids and modular constructions


Author: Günter M. Ziegler
Journal: Proc. Amer. Math. Soc. 113 (1991), 817-829
MSC: Primary 05B35; Secondary 05C38, 06C10
DOI: https://doi.org/10.1090/S0002-9939-1991-1068134-3
MathSciNet review: 1068134
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{M}$ be the class of binary matroids without a Fano plane as a submatroid. We show that every supersolvable matroid in $ \mathcal{M}$ is graphic, corresponding to a chordal graph. Then we characterize the case that the modular join of two matroids is supersolvable. This is used to study modular flats and modular joins of binary supersolvable matroids. We decompose supersolvable matroids in $ \mathcal{M}$ as modular joins with respect to hyperplanes. For such matroids every modular flat is contained in a maximal chain of modular flats, and thus modular joins are again supersolvable.


References [Enhancements On Off] (What's this?)

  • [1] K. Baclawski and N. White, Higher order independence in matroids, J. London Math. Soc. (2) 19 (1979), 193-202. MR 533317 (83c:05036)
  • [2] F. Barahona and M. Grötschel, On the cycle polytope of a binary matroid, J. Combin. Theory Ser. B 40 (1986), 40-62. MR 830592 (87e:05041)
  • [3] A. Björner and G. M. Ziegler, Broken circuit complexes: factorizations and generalizations, J. Combin. Theory Ser. B 51 (1991), 96-126. MR 1088629 (92b:52027)
  • [4] R. C. Bose and R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966), 96-104. MR 0197215 (33:5397)
  • [5] T. Brylawski, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975), 1-44. MR 0357163 (50:9631)
  • [6] -, The broken-circuit complex, Trans. Amer. Math. Soc. 234 (1977), 417-433. MR 468931 (80a:05055)
  • [7] R. Diestel, Simplicial decompositions, tree decompositions and graph minors, Proc. Eleventh British Combin. Conf., London, 1987, Ars Combin. 25C (1988), 97-104. MR 943381 (89e:05154)
  • [8] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76. MR 0130190 (24:A57)
  • [9] M. C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, New York, 1980. MR 562306 (81e:68081)
  • [10] M. D. Halsey, Line-closed combinatorial geometries, Discrete Math. 65 (1987), 245-248. MR 897649 (88g:05043)
  • [11] I. Heller, On linear systems with integral valued solutions, Pacific J. Math. 7 (1957), 1351-1364. MR 0094381 (20:899)
  • [12] J. P. S. Kung, Growth rates and critical exponents of classes of binary geometries, Trans. Amer. Math. Soc. 293 (1986), 837-859. MR 816330 (87f:05043)
  • [13] B. Lindström, On strong joins and pushouts of combinatorial geometries, J. Combin. Theory Ser. A 25 (1978), 77-79. MR 0491268 (58:10532)
  • [14] U. S. R. Murty, Extremal matroids with forbidden minors, Proc. Seventh Southeastern Conf. Combinatorics, Graph Theory, and Computing, Baton Rouge, 1976, Congr. Numer. XVII (1976), 463-468. MR 0444500 (56:2851)
  • [15] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305-354. MR 579077 (82j:05046)
  • [16] R. P. Stanley, Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217. MR 0295976 (45:5037)
  • [17] -, Supersolvable lattices, Algebra Universalis 2 (1972), 197-217. MR 0309815 (46:8920)
  • [18] D. J. A. Welsh, Matroid theory, Academic Press, London, 1976. MR 0427112 (55:148)
  • [19] N. White (ed.), Theory of matroids, Cambridge Univ. Press, Cambridge, 1986.
  • [20] -(ed.), Combinatorial geometries, Cambridge Univ. Press, Cambridge, 1987.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05B35, 05C38, 06C10

Retrieve articles in all journals with MSC: 05B35, 05C38, 06C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1068134-3
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society