Schwarzian derivatives and zeros of solutions to second order linear differential equations

Authors:
A. Hinkkanen and John Rossi

Journal:
Proc. Amer. Math. Soc. **113** (1991), 741-746

MSC:
Primary 34C10; Secondary 30D05, 34A20

MathSciNet review:
1069689

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be entire. Suppose that there exists an unbounded quasidisk such that is sufficiently small in . We prove that then any nontrivial solution to has at most one zero in . We show that if where and are polynomials, one can usually take to be an angle of opening where is the degree of .

**[1]**Lars V. Ahlfors,*Quasiconformal reflections*, Acta Math.**109**(1963), 291–301. MR**0154978****[2]**Steven B. Bank,*On determining the location of complex zeros of solutions of certain linear differential equations*, Ann. Mat. Pura Appl. (4)**151**(1988), 67–96. MR**964503**, 10.1007/BF01762788**[3]**F. W. Gehring,*Univalent functions and the Schwarzian derivative*, Comment. Math. Helv.**52**(1977), no. 4, 561–572. MR**0457701****[4]**Simon Hellerstein and John Rossi,*On the distribution of zeros of solutions of second-order differential equations*, Complex Variables Theory Appl.**13**(1989), no. 1-2, 99–109. MR**1029359****[5]**Matti Lehtinen,*On the inner radius of univalency for noncircular domains*, Ann. Acad. Sci. Fenn. Ser. A I Math.**5**(1980), no. 1, 45–47. MR**595176**, 10.5186/aasfm.1980.0515**[6]**Matti Lehtinen,*Estimates of the inner radius of univalency of domains bounded by conic sections*, Ann. Acad. Sci. Fenn. Ser. A I Math.**10**(1985), 349–353. MR**802496**, 10.5186/aasfm.1985.1038**[7]**Olli Lehto,*Remarks on Nehari’s theorem about the Schwarzian derivative and schlicht functions*, J. Analyse Math.**36**(1979), 184–190 (1980). MR**581811**, 10.1007/BF02798778**[8]**Olli Lehto,*Univalent functions and Teichmüller spaces*, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR**867407****[9]**Zeev Nehari,*The Schwarzian derivative and schlicht functions*, Bull. Amer. Math. Soc.**55**(1949), 545–551. MR**0029999**, 10.1090/S0002-9904-1949-09241-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10,
30D05,
34A20

Retrieve articles in all journals with MSC: 34C10, 30D05, 34A20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1069689-5

Article copyright:
© Copyright 1991
American Mathematical Society