Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillation with respect to partial variables of linear second-order differential systems


Authors: Zong Qi Deng and Shi Gui Ruan
Journal: Proc. Amer. Math. Soc. 113 (1991), 777-783
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1991-1070514-7
MathSciNet review: 1070514
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the second-order vector differential system (1) $ x''(t) + Q(t)x(t) = 0$ and matrix differential system (2) $ X''(t) + Q(t)X(t) = 0$, where $ x(t)$ is an $ n$-dimensional vector function and $ X(t)$ and $ Q(t)$ are $ n \times n$ continuous matrix functions. In this article, we establish the concept that systems (1) and (2) are oscillatory with respect to partial variables. Some sufficient conditions are obtained; several examples are given to illustrate the results.


References [Enhancements On Off] (What's this?)

  • [1] S. Ahmad, On positivity of solutions and conjugate points of nonselfadjoint systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 71-75. MR 539335 (80h:34038)
  • [2] S. Ahmad and A. C. Lazer, A new generalization of the Sturm comparison theorem to selfadjoint systems, Proc. Amer. Math. Soc. 68 (1978), 185-188. MR 0470327 (57:10085)
  • [3] S. Ahmad and C. C. Travis, Oscillation criteria for second order differential systems, Proc. Amer. Math. Soc. 71 (1978), 247-252. MR 0486792 (58:6492)
  • [4] F. V. Atkinson, H. G. Kaper, and M. K. Kwong, An oscillation criterion for linear second order differential systems, Proc. Amer. Math. Soc. 94 (1985), 91-96. MR 781063 (86h:34028)
  • [5] R. Bellman, Introduction to matrix analysis, 2nd ed., McGraw-Hill, New York, 1970. MR 0258847 (41:3493)
  • [6] G. J. Butler, L. H. Erbe, and A. B. Mingarelli, Riccati techniques and variational principles in oscillation theory for linear systems, Trans. Amer. Math. Soc. 303 (1987), 263-282. MR 896022 (88h:34023)
  • [7] P. Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, 1982. MR 658490 (83e:34002)
  • [8] W. J. Kim, Comparison theorems for second order differential systems, Proc. Amer. Math. Soc. 96 (1986), 287-293. MR 818460 (87d:34048)
  • [9 M] K. Kwong, H. G. Kaper, Z. Akiyama, and A. B. Mingarelli, Oscillation of linear second-order differential systems, Proc. Amer. Math. Soc. 91 (1984), 85-91. MR 735570 (85g:34027)
  • [10] A. B. Mingarelli, On a conjecture for oscillation of second order ordinary differential systems, Proc. Amer. Math. Soc. 82 (1981), 593-598. MR 614884 (82j:34028)
  • [11] S. Ruan and Z. Deng, Oscillation criteria for second order linear differential systems, J. Central China Normal Univ. 24 (1990), 1-6. MR 1072700 (92i:34040)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1070514-7
Keywords: Oscillation with respect to partial variable, prepared solutions, secondorder differential systems
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society