NONREALIZABILITY OF SUBALGEBRAS OF \mathfrak{A}^*

STANLEY O. KOCHMAN

(Communicated by Frederick R. Cohen)

Abstract. At the prime two, the dual of the Steenrod algebra is a polynomial algebra in generators ξ_n, $n \geq 1$. The Eilenberg-Mac Lane spectrum $K(\mathbb{Z}_2)$ has homology $Z_2[\xi_n | n \geq 1]$, the Brown-Peterson spectrum BP has homology $Z_2[\xi_n^2 | n \geq 1]$, and the symplectic Thom spectrum MSp has homology $Z_2[\xi_n^4 | n \geq 1] \otimes \Xi$. In this paper, we show that there is no spectrum B_k with $H_*B_k = Z_2[\xi_n^k | n \geq 1]$ for $k \geq 2$.

In this paper, all spectra are localized at the prime two, and all coefficients are \mathbb{Z}_2. All our spectra E have units $\mu: S \to E$, and all our ring spectra have a homotopy unit, are homotopy associative, and are homotopy commutative. Let $\mathfrak{A}^* = Z_2[\xi_n | n \geq 1]$ denote the dual of the Steenrod algebra. Recall [2, 7] that as algebras and \mathfrak{A}^*-comodules, $H_*KZ_2 = Z_2[\xi_n | n \geq 1]$, $H_*BP = Z_2[\xi_n^2 | n \geq 1]$, and $H_*MSp = Z_2[\xi_n^4 | n \geq 1] \otimes \Xi$, where $\Xi = Z_2[V_m | m \neq 2^q - 1]$. The V_m are \mathfrak{A}^*-primitive elements of degree $4m$. In this paper we show that for $k \geq 2$ there is no ring spectrum B_k such that $H_*B_k = Z_2[\xi_n^{2k} | n \geq 1]$ as algebras and \mathfrak{A}^*-comodules. For $k \geq 4$, we prove the stronger result that there is no spectrum B_k such that $H_*B_k = Z_2[\xi_n^{2k} | n \geq 1] \otimes \Xi_k$ as \mathfrak{A}^*-comodules, where Ξ_k is a set of \mathfrak{A}^*-primitive elements. Of course, MSp is an example of a B_2. We cannot determine whether any B_3 exist. If spectra of the type B_k, $k \geq 3$, had existed, they would have defined generalized Adams spectral sequences which would have been efficient methods for computing π_*S. (For example, see [6] for a description of the MSp-Adams-Novikov spectral sequence for π_*S.)

Assume that B_k exists with $k \geq 2$. Consider the Adams spectral sequence:

$$E_2^{n,I} = \text{Ext}_*^I(H^*B_k, Z_2)_n \Rightarrow \pi_*B_k.$$

Note that since B_k may not be a ring spectrum, the Adams spectral sequence (A) may not have a multiplicative structure. However, $H_*B_k = Z_2[\xi_n^k | n \geq 1]$ is

Received by the editors March 9, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 55P42; Secondary 55N22, 55S10, 55T15.

This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

©1991 American Mathematical Society
0002-9939/91 $1.00 + .25 per page
a sub-Hopf algebra of \(\mathfrak{A}^* \). Let \(T(k) \) denote the truncated polynomial algebra \(Z_2[\xi_n|n \geq 1]/(\xi_n^{2^k}|n \geq 1) \). By the change of rings theorem of A. Liulevicius [7]
\[
\text{Ext}_{\mathfrak{A}}(H^*B_k, Z_2) \cong \text{Cotor}_{\mathfrak{A}^*}(H_*B_k, Z_2)
\]
\[
= \text{Cotor}_{\mathfrak{A}^*}(Z_2[\xi_n^{2^k}|n \geq 1], Z_2) \cong \text{Cotor}_{T(k)}(Z_2, Z_2).
\]
We use the May spectral sequence [8] to study \(\text{Cotor}_{T(k)}(Z_2, Z_2) \):
\[
E^0T(k) \text{ is the associated graded algebra of } T(k) \text{ induced by the coproduct filtration. Let } \mathfrak{e}^*T(k) \text{ denote the cobar construction of } T(k). \text{ The following lemma describes a DGA algebra } M\mathfrak{E}_1 \text{ whose homology is } M\mathfrak{E}_2.
\]
Lemma 1. Let \(h_{nj} = [\xi_n^{2^j}] \in \mathfrak{e}^*T(k) = \mathfrak{e}^{2^n+2^j-2^j-1}T(k) \). Then
\[
M\mathfrak{E}_1 = Z_2[h_{nj}|n \geq 1 \text{ and } k > j > 0].
\]
Moreover, \(d_1(h_{nj}) = \sum_{t=1}^{k-j-1} h_{n-t,j+t}h_{tj} \) for \(0 \leq j < k-1 \), and \(d_1(h_{n,k-1}) = 0 \).
\[\text{Proof.} \]
\[
E(S), P(S), \Gamma(S) \text{ denote the exterior algebra, polynomial algebra, and divided polynomial algebra, respectively, on the set } S, \text{ and let } V(\mathfrak{L}) \text{ denote the universal enveloping algebra of the restricted Lie algebra } \mathfrak{L} \text{ [10]. Let } \xi_{nj} = \{\xi_n^{2^j}\} \text{ in } E^0T(k). \text{ Then } E^0T(k) = E(\xi_{nj}|n \geq 1, k > j \geq 0) \text{ with } \tilde{\Delta}(\xi_{nj}) = \sum_{t=1}^{k-j-1} \xi_{n-t,j+t} \otimes \xi_{tj}. \text{ Thus, } (E^0T(k))^* = V(\mathfrak{L}), \text{ where } \mathfrak{L} \text{ is the restricted Lie algebra with } Z_2\text{-basis } \{\xi_n^*|n \geq 1, k > j \geq 0\}, \text{ zero restriction, and Lie bracket } [\xi_{mi}^*, \xi_{nj}^*] \text{ equal to } \xi_{m+n,i}^*, \xi_{m+n,j}^*, 0 \text{ if } m+i = j, n+j = i, m+i \neq j \text{ and } n+j \neq i, \text{ respectively. By } [9, \text{Remark 10}], \text{ there is a differential on the } Z_2\text{-coalgebra } X = \Gamma(s\mathfrak{L}) \otimes V(\mathfrak{L}) \text{ making } X \text{ a free } (E^0T(k))^*\text{-resolution of } Z_2. \text{ Thus,}
\[
M\mathfrak{E}_2 = H_*(\text{Hom}_{V(\mathfrak{L})}(X, Z_2))
\]
\[
\cong H_*(\text{Hom}_{Z_2}(\Gamma(s\mathfrak{L}), Z_2)) \cong H_*(Z_2[h_{nj}|n \geq 1, k > j \geq 0]),
\]
where \(h_{nj} = (s\xi_n^*)^* \text{ is represented by } [\xi_n^{2^j}] \text{ in the cobar construction. Clearly } d_1, \text{ being induced by } \tilde{\Delta}(\xi_{nj}), \text{ is given by } d_1(h_{nj}) = \sum_{t=1}^{k-j-1} h_{n-t,j+t}h_{tj} \text{ for } 0 \leq j < k-1. \text{ The situation is analogous to that of } [8, \text{Chapter 2, } \S3] \text{ and } [5, \text{ }\S1]. \quad \square
\]
Lemma 2. For \(k \geq 4 \), there is a nonzero element \(h_0h_{k-1}^2 \in E_2^{2^k-2,3}. \)
\[\text{Proof.} \]
\[
M\mathfrak{E}_1 = Z_2{h_{20}h_{k-1,1}, h_{11}h_0}, \text{ and } d_1(h_{20}h_{k-1,1}), d_1(h_{11}h_0) \text{ contains } h_{20}h_{21}, h_{k-3,3}, h_{11}h_{30}, h_{k-3,3}, \text{ respectively, as a nonzero summand because } k \geq 4. \text{ Thus,}
\]
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
NONREALIZABILITY OF SUBALGEBRAS OF \mathfrak{g}^*

$M^{E_2^{k-1,2}}_{\infty} = 0$, $h_0^2h_{k-1}$ is nonzero in $M^{E_{\infty}^{k-2,3}}_{\infty}$ and defines a nonzero element $h_0^2h_{k-1}$ of $E_2^{k-2,3}$. □

Theorem 3. Spectra B_k and B_k do not exist for $k \geq 4$.

Proof. Consider the unit map $\mu: S \to B_k$. Let the h_k be represented by the $h_{1,k}$ in the May spectral sequences. By Adams [1], $d_2(h_k) = h_0^2h_{k-1}$ for $k \geq 4$ in the Adams spectral sequence for π_*:

$$E_2^{n,1} = \text{Ext}^1_\mathbb{Z}(\mathbb{Z}_2, \mathbb{Z}_2) \otimes \mathbb{Z}_2^{\infty}.$$

μ induces a map of spectral sequences μ_\ast between the Adams spectral sequences (C) and (A). Observe that μ_2 is induced by the map of algebras $\mu_\ast: \mathbb{Z}_2 \to H^*B_k = \mathbb{Z}_2[e_m|m \geq 1]$, and thus μ_2 is an algebra homomorphism. Clearly $\mu_2(h_i) = h_i$ for $0 \leq i < k - 1$, and $\mu_2(h_k) = 0$. Thus, $h_0^2h_{k-1}$ must be zero in E_2 of the Adams spectral sequence (A), contradicting Lemma 2. Therefore, B_k cannot exist for $k \geq 4$. The E_2-term of the Adams spectral sequence for π_*B_k equals $\text{Cotor}_T(Z_2, Z_2) \otimes \mathfrak{g}_k$. Thus, the above argument, with the Adams spectral sequence for π_*B_k replacing the Adams spectral sequence (A), shows that B_k cannot exist for $k \geq 4$. □

Theorem 4. A ring spectrum B_2 does not exist.

Proof. The E_2-term of the Adams spectral sequence (A) is $\text{Cotor}_T(Z_2, Z_2)$, which is computed in [5, §3], where $T(2)$ is called B. In the notation of [5, §3], $P(0, 1) \in E_2^{7,2}$ is a nonzero infinite cycle because $E_2^{8,0} = 0$. Let $\rho \in \pi_*B_3$ project to $P(0, 1)$. In $E_2^{14,3}$, $h_0^2P(0, 1)^2 = \Phi_0^2\Phi_1P(0, 1) \neq 0$. Note $E_2^{15,0} = E_2^{15,1} = 0$, $E_2^{15,2} = Z_2(P(0, 2))$, and $E_2^{15,3} = Z_2(h_0P(0, 2))$. Observe that $P(0, 2) \in \langle \Phi_0, h_0, \Phi_2 \rangle$ in E_2 by [5, Theorem 4.3(1)]. Now Φ_0 and Φ_2 are infinite cycles because there are no elements whose product with h_0 is 0 in degrees 0 and 12. $\langle \Phi_0, 2, \Phi_2 \rangle$ is defined because Φ_0, Φ_2 is the only nonzero element of degree one, thirteen, respectively. By [4, Theorem 8.1], $P(0, 2)$ is an infinite cycle. Thus, $h_0P(0, 1)^2$ is nonzero in $E_2^{14,5}$ and $2\rho^2 \neq 0$, contradicting the fact that π_*B_2 is a commutative graded ring. Therefore, B_2 cannot exist. □

Recall that $H_*\text{MSp} = \mathbb{Z}_2[e_n|n \geq 1] \otimes \mathfrak{g}$, where \mathfrak{g} is a polynomial algebra of \mathfrak{g}^*-primitive elements.

Lemma 5. There is a map of spectra $f: B_3^{(24)} \to \text{MSp}$ such that

(a) $f|B_3^{(0)} = \mu: S \to \text{MSp}$;
(b) $f_\ast(\xi) \equiv \xi$ modulo the ideal spanned by \mathfrak{g} for all $\xi \in H_*B_3$ with $n < 24$.

Proof. (a) We construct f on $B_3^{(q)}$ by induction on $q \geq 0$. Let $f|B_3^{(0)} = \mu$. Note that H_*B_3 is nonzero only in degrees divisible by eight. Assume that f has been defined on the $8(t - 1)$-skeleton of B_3, $1 \leq t \leq 3$. By [3, Lemma
VI.3.2], the obstruction to extending \(f \) to the \(8t \)-skeleton of \(B_3 \) is an element of \(H^*(B_3; \pi_{8t-1} M\text{Sp}) \). However, the first nonzero element of \(\pi_r M\text{Sp} \) in a degree congruent to 3 mod 4 occurs when \(r = 31 \). Thus, we can extend \(f \) to the 24-skeleton of \(B_3 \).

(b) If \(\xi \in H^n B_3, n \leq 23 \), then \((1 \otimes \epsilon)\psi f_\ast(\xi) = (1 \otimes \epsilon)(1 \otimes f_\ast)\psi(\xi) = (1 \otimes \epsilon)\psi(\xi) = \xi \otimes 1 \). Kernel \((1 \otimes \epsilon)\psi \) equals the ideal spanned by the \(\mathfrak{A}^* \)-primitive elements of positive degree of \(H_\ast M\text{Sp} = \mathbb{Z}_2[\xi_n^r | n \geq 1] \otimes \mathfrak{S} \), which is \(\overline{\mathfrak{S}} \). Thus, \(f_\ast(\xi) \equiv \xi \) modulo the ideal spanned by \(\overline{\mathfrak{S}} \).

Theorem 6. A ring spectrum \(B_3 \) does not exist.

Proof. Observe that \(ME_1^{11,1} = Z_2(h_{22}) = ME_\infty^{11,1} \) because \(ME_1^{12,0} = 0 \). Thus, \(E_1^{11,1} = Z_2(R) \). A straightforward calculation shows that \(ME_2^{10,k} = 0 \) for \(k \geq 3, k \neq 6 \), and that \(ME_2^{10,6} = Z_2(h_{11}^4 h_{20}) \). Thus, the only possibility for a nonzero differential on \(R \) is \(d_5(R) = h_1^2 Q \), where \(h_1, Q \) is represented by \(h_{11}, h_{20} \), respectively, in the May spectral sequence. Let \(f: B_3^{(24)} \to M\text{Sp} \) denote the map of Lemma 5. Then \(f_\ast(h_1^2 Q) = \eta^2 q_0 \not\in \pi_{10} M\text{Sp} \). Thus, \(R \) is an infinite cycle. Let \(\lambda \in \pi_{11} B_3 \) project to \(R \). Note that \(0 \neq h_{10} h_{22}^2 \in ME_1^{22,3} \) is an infinite cycle. Since \(ME_1^{23,k} = 0 \) for \(0 \leq k \leq 2 \), \(0 \neq h_0 R^2 \in E_2^{22,3} \) and \(E_2^{23,0} = E_2^{23,1} = 0 \). Therefore, \(h_0 R^2 \) is a nonbounding infinite cycle. Thus, \(2\lambda^2 \neq 0 \), which contradicts the fact that \(\pi_\ast B_3 \) is a commutative graded ring. Therefore, \(B_3 \) cannot exist.

Bibliography

Department of Mathematics, York University, 4700 Keele Street, North York, Ontario M3J 1P3 Canada