Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A cardinal spline approach to wavelets


Authors: Charles K. Chui and Jian-zhong Wang
Journal: Proc. Amer. Math. Soc. 113 (1991), 785-793
MSC: Primary 41A15; Secondary 42C05
DOI: https://doi.org/10.1090/S0002-9939-1991-1077784-X
MathSciNet review: 1077784
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: While it is well known that the $ m$th order $ B$-spline $ {N_m}(x)$ with integer knots generates a multiresolution analysis, $ \cdots \subset {V_{ - 1}} \subset {V_0} \subset \cdots $, with the $ m$th order of approximation, we prove that $ \psi (x): = L_{2m}^{(m)}(2x - 1)$, where $ {L_{2m}}(x)$ denotes the $ (2m)$th order fundamental cardinal interpolatory spline, generates the orthogonal complementary wavelet spaces $ {W_k}$. Note that for $ m = 1$, when the $ B$-spline $ {N_1}(x)$ is the characteristic function of the unit interval $ [0,1)$, our basic wavelet $ {L'_2}(2x - 1)$ is simply the well-known Haar wavelet. In proving that $ {V_{k + 1}} = {V_k} \oplus {W_k}$, we give the exact formulation of $ {N_m}(2x - j), j \in \mathbb{Z}$, in terms of integer translates of $ {N_m}(x)$ and $ \psi (x)$. This allows us to derive a wavelet decomposition algorithm without relying on orthogonality nor construction of a dual basis.


References [Enhancements On Off] (What's this?)

  • [1] G. Battle, A block spin construction of ondelettes. Part I: Lemarié functions, Comm. Math. Phys. 110 (1987), 601-615. MR 895218 (88g:81054)
  • [2] C. K. Chui, Multivariate splines, CBMS-NSF Regional Conf. Ser. in Appl. Math. no. 54, SIAM, Philadelphia, Penn., 1988. MR 1033490 (92e:41009)
  • [3] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. MR 951745 (90m:42039)
  • [4] P. G. Lemarié, Ondelettes a localisation exponentielle, J. Math. Pures Appl. 67 (1988), 227-236. MR 964171 (89m:42024)
  • [5] S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $ {L^2}(R)$, Trans. Amer. Math. Soc. 315 (1989), 69-87. MR 1008470 (90e:42046)
  • [6] -, Multifrequency channel decompositions of images and wavelet models, IEEE Trans. Acoust. Speech Signal Process. 37 (1989), 2091-2110.
  • [7] Y. Meyer, Ondelettes et functions splines, Seminaire Equations aux Derivees Partielles, École Polytechnique, Paris (Dec. 1986).
  • [8] I. J. Schoenberg, Cardinal spline interpolation, CBMS-NSF Regional Conf. Ser. in Appl. Math., no. 12, SIAM, Philadelphia, Penn., 1973. MR 0420078 (54:8095)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A15, 42C05

Retrieve articles in all journals with MSC: 41A15, 42C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1077784-X
Keywords: Wavelets, cardinal splines, Euler-Frobenius polynomials, wavelet decompositions, algorithms
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society