Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed point iteration for local strictly pseudo-contractive mapping


Author: Xinlong Weng
Journal: Proc. Amer. Math. Soc. 113 (1991), 727-731
MSC: Primary 47H10; Secondary 47H09
DOI: https://doi.org/10.1090/S0002-9939-1991-1086345-8
MathSciNet review: 1086345
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A fixed point of the local strictly pseudo-contractive mapping is obtained as the limit of an iteratively constructed sequence with an error estimation in uniformly smooth Banach spaces.


References [Enhancements On Off] (What's this?)

  • [1] Ya. I. Al'ber and A. I. Notik, Geometric properties of Banach spaces and approximate methods for solving nonlinear operator equations, Soviet Math. Dokl. 29 (1984), 611-615.
  • [2] C. E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 99 (1987), 283-288. MR 870786 (87m:47122)
  • [3] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 509-519. MR 0226230 (37:1820)
  • [4] S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, J. Nonlinear Anal. 2 (1978), 85-92. MR 512657 (81b:47065)
  • [5] -, Constructive techniques for accretive and monotone operators, Appl. Nonlinear Anal. Arlington, TX, 1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 47H09

Retrieve articles in all journals with MSC: 47H10, 47H09


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1086345-8
Keywords: Local strictly pseudo-contractive mapping, iterative method
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society