Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On fixed point theorems of nonexpansive mappings in product spaces


Authors: Kok-Keong Tan and Hong Kun Xu
Journal: Proc. Amer. Math. Soc. 113 (1991), 983-989
MSC: Primary 47H10
DOI: https://doi.org/10.1090/S0002-9939-1991-1062839-6
MathSciNet review: 1062839
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove some fixed point theorems for nonexpansive self- and non-self-mappings in product spaces; in particular, we provide a constructive proof of a result of Kirk and Martinez and a partial answer to a question of Khamsi. Our proofs are elementary in the sense that we do not use any universal (or ultra) nets.


References [Enhancements On Off] (What's this?)

  • [1] F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665. MR 0230179 (37:5742)
  • [2] R. E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262. MR 0324491 (48:2843)
  • [3] M. Edelstein and R. C. O'Brien, Nonexpansive mappings, asymptotic regularity and successive approximations, J. London Math. Soc. 17 (1978), 547-554. MR 500642 (80b:47074)
  • [4] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, New York, Basel, 1984. MR 744194 (86d:58012)
  • [5] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. MR 595102 (82b:46016)
  • [6] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71. MR 0412909 (54:1030)
  • [7] M. A. Khamsi, On normal structure, fixed point property and contractions of type $ (\gamma )$, Proc. Amer. Math. Soc. 106 (1989), 995-1001. MR 960647 (90d:46028)
  • [8] W. A. Kirk, Fixed point theory for nonexpansive mappings, Lecture Notes in Math., vol. 886, Springer-Verlag, 1981, pp. 484-505. MR 643024 (83c:47076)
  • [9] -, Fixed point theory for nonexpansive mappings II, Contemp. Math. 18 (1983), 121-140. MR 728596 (85a:47062)
  • [10] -, Nonexpansive mappings in product spaces, set-valued mappings and $ k$-uniform rotundity, Nonlinear Functional Analysis (F. E. Browder, ed.), Proc. Sympos. Pure Math., vol. 45, Part 2, Amer. Math. Soc., 1986, pp. 51-64. MR 843594 (87i:47068)
  • [11] -, An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces, Proc. Amer. Math. Soc. 107 (1989), 411-415. MR 941325 (90a:47146)
  • [12] W. A. Kirk and C. Martinez Yanez, Nonexpansive and locally nonexpansive mappings in product spaces, Nonlinear Anal. 12 (1988), 719-725. MR 947884 (89h:47084)
  • [13] W. A. Kirk and Y. Sternfeld, The fixed point property for nonexpansive mappings in certain product spaces, Houston J. Math. 10 (1984), 207-214. MR 744905 (85j:47058)
  • [14] T. Kuczumow, Fixed point theorems in product spaces, Proc. Amer. Math. Soc. 108 (1990), 727-729. MR 991700 (90e:47061)
  • [15] E. Maluta, Uniformly normal structure and related coefficients, Pacific J. Math. 111 (1984), 357-369. MR 734861 (85j:46023)
  • [16] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 595-597. MR 0211301 (35:2183)
  • [17] F. Sullivan, A generalization of uniformly rotund Banach spaces, Canad. J. Math. 31 (1979), 628-636. MR 536368 (80h:46023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10

Retrieve articles in all journals with MSC: 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1062839-6
Keywords: Nonexpansive mapping, fixed point, weakly inward, product space
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society