On fixed point theorems of nonexpansive mappings in product spaces

Authors:
Kok-Keong Tan and Hong Kun Xu

Journal:
Proc. Amer. Math. Soc. **113** (1991), 983-989

MSC:
Primary 47H10

DOI:
https://doi.org/10.1090/S0002-9939-1991-1062839-6

MathSciNet review:
1062839

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove some fixed point theorems for nonexpansive self- and non-self-mappings in product spaces; in particular, we provide a constructive proof of a result of Kirk and Martinez and a partial answer to a question of Khamsi. Our proofs are elementary in the sense that we do not use any universal (or ultra) nets.

**[1]**F. E. Browder,*Semicontractive and semiaccretive nonlinear mappings in Banach spaces*, Bull. Amer. Math. Soc.**74**(1968), 660-665. MR**0230179 (37:5742)****[2]**R. E. Bruck,*Properties of fixed point sets of nonexpansive mappings in Banach spaces*, Trans. Amer. Math. Soc.**179**(1973), 251-262. MR**0324491 (48:2843)****[3]**M. Edelstein and R. C. O'Brien,*Nonexpansive mappings, asymptotic regularity and successive approximations*, J. London Math. Soc.**17**(1978), 547-554. MR**500642 (80b:47074)****[4]**K. Goebel and S. Reich,*Uniform convexity, hyperbolic geometry, and nonexpansive mappings*, Marcel Dekker, New York, Basel, 1984. MR**744194 (86d:58012)****[5]**R. Huff,*Banach spaces which are nearly uniformly convex*, Rocky Mountain J. Math.**10**(1980), 743-749. MR**595102 (82b:46016)****[6]**S. Ishikawa,*Fixed points and iteration of a nonexpansive mapping in a Banach space*, Proc. Amer. Math. Soc.**59**(1976), 65-71. MR**0412909 (54:1030)****[7]**M. A. Khamsi,*On normal structure, fixed point property and contractions of type*, Proc. Amer. Math. Soc.**106**(1989), 995-1001. MR**960647 (90d:46028)****[8]**W. A. Kirk,*Fixed point theory for nonexpansive mappings*, Lecture Notes in Math., vol. 886, Springer-Verlag, 1981, pp. 484-505. MR**643024 (83c:47076)****[9]**-,*Fixed point theory for nonexpansive mappings*II, Contemp. Math.**18**(1983), 121-140. MR**728596 (85a:47062)****[10]**-,*Nonexpansive mappings in product spaces, set-valued mappings and**-uniform rotundity*, Nonlinear Functional Analysis (F. E. Browder, ed.), Proc. Sympos. Pure Math., vol. 45, Part 2, Amer. Math. Soc., 1986, pp. 51-64. MR**843594 (87i:47068)****[11]**-,*An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces*, Proc. Amer. Math. Soc.**107**(1989), 411-415. MR**941325 (90a:47146)****[12]**W. A. Kirk and C. Martinez Yanez,*Nonexpansive and locally nonexpansive mappings in product spaces*, Nonlinear Anal.**12**(1988), 719-725. MR**947884 (89h:47084)****[13]**W. A. Kirk and Y. Sternfeld,*The fixed point property for nonexpansive mappings in certain product spaces*, Houston J. Math.**10**(1984), 207-214. MR**744905 (85j:47058)****[14]**T. Kuczumow,*Fixed point theorems in product spaces*, Proc. Amer. Math. Soc.**108**(1990), 727-729. MR**991700 (90e:47061)****[15]**E. Maluta,*Uniformly normal structure and related coefficients*, Pacific J. Math.**111**(1984), 357-369. MR**734861 (85j:46023)****[16]**Z. Opial,*Weak convergence of the sequence of successive approximations for nonexpansive mappings*, Bull. Amer. Math. Soc.**73**(1967), 595-597. MR**0211301 (35:2183)****[17]**F. Sullivan,*A generalization of uniformly rotund Banach spaces*, Canad. J. Math.**31**(1979), 628-636. MR**536368 (80h:46023)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H10

Retrieve articles in all journals with MSC: 47H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1062839-6

Keywords:
Nonexpansive mapping,
fixed point,
weakly inward,
product space

Article copyright:
© Copyright 1991
American Mathematical Society