Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite invariant measures on flows


Author: Robert S. Y. Wong
Journal: Proc. Amer. Math. Soc. 114 (1992), 167-170
MSC: Primary 46L35; Secondary 46L55
DOI: https://doi.org/10.1090/S0002-9939-1992-1059639-0
MathSciNet review: 1059639
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that an ergodic flow admits a finite invariant measure if and only if the Kreiger factor whose flow of weights is the flow contains a $ {\text{III}_1}$ subfactor which is the range of a faithful normal semifinite conditional expectation.


References [Enhancements On Off] (What's this?)

  • [1] A. Connes, Sur la theorie non commutative de l'integration, Lecture Notes in Math., vol. 725, Springer-Verlag, 1979, pp. 19-143. MR 548112 (81g:46090)
  • [2] A. Connes and E. J. Woods, Approximate transitive flows and ITPFI factors, Ergodic Theory Dynamical Systems 5 (1985), 203-236. MR 796751 (86m:46062)
  • [3] U. Haagerup, Operator valued weights. I, J. Funct. Anal. 32 (1979), 176-206; II, ibid. 33 (1979), 339-361. MR 549119 (81e:46049b)
  • [4] T. Hamachi and M. Osikawa, Ergodic groups of automorphisms and Krieger's theorems, Sem. Math. Sci. No.3, Keio University, 1981. MR 617740 (84d:46099)
  • [5] S. Stratila, Modular theory in operator algebras, Abascus Press, 1981. MR 696172 (85g:46072)
  • [6] M. Takesaki, Theory of operator algebras 1, Springer-Verlag, 1979. MR 548728 (81e:46038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L35, 46L55

Retrieve articles in all journals with MSC: 46L35, 46L55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1059639-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society