Examples of ungradable algebras

Authors:
Th. Belzner, W. D. Burgess, K. R. Fuller and R. Schulz

Journal:
Proc. Amer. Math. Soc. **114** (1992), 1-4

MSC:
Primary 16P10; Secondary 16W50

DOI:
https://doi.org/10.1090/S0002-9939-1992-1062382-5

MathSciNet review:
1062382

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Examples are presented of finite-dimensional algebras that admit no positive grading (that is, a nontrivial grading indexed by the natural numbers). Some of these examples have finite global dimension (they are even quasihereditary), and yield a negative answer to a question of Anick and Green.

**[1]**D. J. Anick and E. L. Green,*On the homology of quotients of path algebras*, Comm. Algebra**15**(1987), 309-342. MR**876982 (88c:16033)****[2]**M. Auslander,*Representation theory of artin algebras*II, Comm. Algebra**1**(1974), 177-268. MR**0349747 (50:2240)****[3]**V. P. Camillo and K. R. Fuller,*On graded rings with finiteness conditions*, Proc. Amer. Math. Soc.**86**(1982), 1-5. MR**663852 (83h:16001)****[4]**E. Kline, B. Parshall, and L. Scott,*Finite dimensional algebras and highest weight categories*, J. Reine Angew. Math.**391**(1988), 277-291. MR**961165 (90d:18005)****[5]**V. Dlab and C. M. Ringel,*Quasihereditary algebras*, Illinois J. Math.**33**(1989), 280-291. 1988. MR**987824 (90e:16023)****[6]**-,*Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring*, Proc. Amer. Math Soc.**107**(1989), 1-5. MR**943793 (89m:16033)****[7]**R. Gordon and E. L. Green,*Graded artin algebras*, J. Algebra**76**(1982), 111-137. MR**659212 (83m:16028a)****[8]**R. S. Pierce,*Associative algebras*, Springer-Verlag, Berlin, Heidelberg, and New York, 1982. MR**674652 (84c:16001)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16P10,
16W50

Retrieve articles in all journals with MSC: 16P10, 16W50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1062382-5

Keywords:
Graded algebras,
ungradable algebras,
finite global dimension

Article copyright:
© Copyright 1992
American Mathematical Society