A NOTE ON THE CONNECTEDNESS PROBLEM FOR NEST ALGEBRAS

DAVID R. PITTS

(Communicated by Paul S. Muhly)

Abstract. It has been conjectured that a certain operator \(T \) belonging to the group \(\mathcal{G} \) of invertible elements of the algebra \(\text{Alg} \mathbb{Z} \) of doubly infinite upper-triangular bounded matrices lies outside the connected component of the identity in \(\mathcal{G} \). In this note we show that \(T \) actually lies inside the connected component of the identity of \(\mathcal{G} \).

Let \(T \) be the unit circle in the complex plane with normalized Lebesgue measure. For \(1 < p < \infty \), let \(H^p \) be the usual Hardy space of all functions in \(L^p(T) \) that have analytic extensions to the open unit disk \(D \). Let \(\mathcal{H} = L^2(T) \) and let \(\mathcal{B}(\mathcal{H}) \) be set of all bounded linear operators on \(\mathcal{H} \). Let \(W \in \mathcal{B}(\mathcal{H}) \) be the shift operator: \((Wf)(e^{i\theta}) = e^{i\theta} f(e^{i\theta}) \). In this paper, we consider the nest \(\{ W^n H^2 : n \in \mathbb{Z} \} \) of subspaces of \(L^2(T) \), and its associated nest algebra,

\[
\text{Alg} \mathbb{Z} = \{ T \in \mathcal{B}(\mathcal{H}) : TW^n H^2 \subseteq W^n H^2 \text{ for all } n \in \mathbb{Z} \}.
\]

A question which has been unanswered for several years is the following:

Question. Is the group of invertible elements of the Banach algebra \(\text{Alg} \mathbb{Z} \) connected in the norm topology?

It is frequently conjectured that the answer to this question is no. The reason for conjecturing a negative answer is because of a strong analogy between nest algebras and analytic function theory. We refer the reader to the book by Davidson [1] for details and more background on this question.

For each \(f \in L^\infty(T) \), let \(M_f \in \mathcal{B}(\mathcal{H}) \) be the multiplication operator,

\[
M_f \phi = f \phi, \quad \phi \in L^2(T).
\]

Note that for \(f \in H^\infty \), we have \(M_f \in \text{Alg} \mathbb{Z} \). Let \(a \) be a positive real number and set

\[
h(z) = \frac{ai}{\pi} \log \left(\frac{1 + z}{1 - z} \right).
\]
Then \(h \) is a conformal map of the open unit disk onto the unbounded vertical strip \(\{ z \in \mathbb{C} : -a < \text{Re}(z) < a \} \).

If \(f = \exp(h) \) then it is easy to see that both \(f \) and \(1/f \) are \(H^\infty \) functions and moreover, that \(f \) is not the exponential of any \(H^\infty \) function. Therefore \(f \) cannot be connected to the constant function 1 via a norm continuous path within the group of invertible elements of the Banach algebra \(H^\infty \). For this reason, the operator \(M_f \) has been suggested as a possible example of an operator which cannot be connected to the identity via a norm continuous path inside the group of invertibles in \(\text{Alg} \mathbb{Z} \).

The purpose of this note is to show that in fact, \(M_f \) may be connected to the identity via a norm continuous path of invertible elements in \(\text{Alg} \mathbb{Z} \).

Before giving the proof we pause for some terminology and to make a few simple remarks.

Let \(\mathcal{A} \) be a unital Banach algebra with unit \(I \). Say that an invertible element \(a \) of \(\mathcal{A} \) may be connected to the identity if there exists a norm continuous function \(f : [0, 1] \rightarrow \mathcal{A} \) such that \(f(0) = a \), \(f(1) = I \), and \(f(t) \) is an invertible element of \(\mathcal{A} \) for each \(t \). The algebra \(\mathcal{A} \) has the connectedness property if every invertible element of \(\mathcal{A} \) may be connected to the identity. We use the term symmetry to describe a square root of the identity in a unital Banach algebra \(\mathcal{A} \). Such elements have spectrum contained in the set \(\{-1, 1\} \) and hence are connected to the identity. In fact, if \(\gamma(t) \) is an arc in the complex plane connecting \(-1\) to \(1\) which does not pass through the origin, then

\[
 \sigma(t) = \frac{I + \gamma(t)}{2} + \gamma(t) \frac{I - \gamma(t)}{2}
\]

is a norm continuous path of invertible elements of \(\mathcal{A} \) which connects the symmetry \(\gamma \) to the identity \(I \).

The algebra

\[
 \mathcal{D} = \text{Alg} \mathbb{Z} \cap (\text{Alg} \mathbb{Z})^*
\]

is a von Neumann subalgebra of \(\text{Alg} \mathbb{Z} \) and since any von Neumann algebra has the connectedness property, we see that any invertible operator in \(\mathcal{D} \) can be connected to the identity in \(\text{Alg} \mathbb{Z} \).

Remark. Let \(\alpha \) be a complex number of unit modulus and let \(g \in L^\infty(T) \). Let

\[
 g_\alpha(z) = g(\alpha z), \quad z \in T,
\]

and define a unitary operator \(S_\alpha \in \mathcal{D} \) by

\[
 S_\alpha e_n = \alpha^n e_n,
\]

where \(e_n(e^{i\theta}) = e^{in\theta} \) is the usual orthonormal basis for \(L^2(T) \).

We then have

\[
 S_\alpha M_g S_\alpha^* = M_{g_\alpha}.
\]

Note that by the above remarks, \(M_g \) and \(M_{g_\alpha} \) belong to the same connectedness class of invertibles in \(\text{Alg} \mathbb{Z} \).

We now show that \(M_f \) can be connected to the identity. Note that \(h(z) = -h(-z) \). It follows that we have

\[
 f(z)f(-z) = 1 \quad \text{for all } z \in \overline{\mathcal{D}}.
\]
If $S = S_{-1}$, equation (2) yields,

$$SM_fSM_f = I.$$

Hence both S and SM_f are symmetries in $\text{Alg} \mathbb{Z}$ and

$$M_f = S(SM_f).$$

Therefore M_f can be connected to the identity in $\text{Alg} \mathbb{Z}$. Moreover, equation (1) enables one to obtain an explicit path connecting M_f to the identity.

Question. Let m be a conformal mapping of the disk onto itself and set $g = f \circ m$. Is M_g connected to the identity in $\text{Alg} \mathbb{Z}$? Note that the remark above shows that if m is a rotation, then this is the case.

Remark. Let R be any proper open subset of the complex plane that is simply connected and satisfies $R = -R$. Then $0 \in R$ and if h is any conformal map from the disk onto R with $h(0) = 0$, we have $h(z) = -h(-z)$. (Indeed, the function $g(z) = -h(-z)$ is also a conformal map of the disk onto R. Since $h(0) = g(0)$ and $h'(0) = g'(0)$, the Riemann mapping theorem implies $g = h$.) The argument given above now shows that if we assume that $\{\Re(z) : z \in R\}$ is bounded and set $f = \exp(h)$, then M_f is a product of two symmetries in $\text{Alg} \mathbb{Z}$ and hence is connected to the identity in $\text{Alg} \mathbb{Z}$.

REFERENCES
