Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homotopy and topological actions on spaces with few homotopy groups


Author: Michael S. Postol
Journal: Proc. Amer. Math. Soc. 114 (1992), 251-260
MSC: Primary 55P10
DOI: https://doi.org/10.1090/S0002-9939-1992-1065954-7
MathSciNet review: 1065954
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Cooke [7] studied the problem of replacing homotopy actions by topological actions. In this paper, we use Cooke's results to show that this can always be done for a large class of spaces having few homotopy groups.


References [Enhancements On Off] (What's this?)

  • [1] Guy Allaud, On the classification of fibre spaces, Math. Z. 92 (1966), 110-125. MR 0189035 (32:6462)
  • [2] M. Arkowitz and C. R. Curjel, The group of homotopy equivalences, Bull. Amer. Math. Soc. 70 (1964), 293-296. MR 0163313 (29:616)
  • [3] -, The Hurewicz homomorphism and finite homotopy invariants, Trans. Amer. Math. Soc. 110(1964), 538-551. MR 0158401 (28:1624)
  • [4] W. D. Barcus and M. G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74. MR 0097060 (20:3540)
  • [5] Henri Cartan, Sur les groupes d'Eilenberg-Mac Lane $ H(\Pi ,n)$. I. Mëthode des constructions, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 467-471. MR 0065160 (16:390a)
  • [6] -, Sur les groupes d'Eilenberg-Mac Lane. II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 704-707. MR 0065161 (16:390b)
  • [7] George Cooke, Replacing homotopy actions by topological actions, Trans. Amer. Math. Soc. 237 (1978), 391-406. MR 0461544 (57:1529)
  • [8] Arthur Copeland, Jr., On $ H$-spaces with 2 nontrivial homotopy groups, Proc. Amer. Math. Soc. 8(1957), 184-191. MR 0083737 (18:754c)
  • [9] A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305. MR 0101521 (21:331)
  • [10] Heinz Hopf, Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. 42 (1941), 22-52. MR 0004784 (3:61b)
  • [11] Donald W. Kahn, The group of homotopy equivalences, Math. Z. 84 (1964), 1-8. MR 0170344 (30:582)
  • [12] Peter J. Kahn, Some function spaces of CW type, Proc. Amer. Math. Soc. 90 (1984), 599-607. MR 733413 (85j:55027)
  • [13] John Milnor, Construction of universal bundles, I., Ann. of Math. 63 (1956), 272-284. MR 0077122 (17:994b)
  • [14] -, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280. MR 0100267 (20:6700)
  • [15] Yasutoshi Nomura, Homotopy equivalences in a principal fibre space, Math. Z. 92 (1966), 380-388. MR 0199860 (33:8000)
  • [16] Michael S. Postol, Realization of homotopy equivalences by homeomorphisms, Thesis, Univ. of Minnesota, 1990.
  • [17] J. P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-Mac Lane, Comment. Math. Helv. 27(1953), 198-232. MR 0060234 (15:643c)
  • [18] Weishu Shih, On the group $ \mathcal{E}[X]$ of homotopy equivalence maps, Bull. Amer. Math. Soc. 70 (1964), 361-365. MR 0160209 (28:3423)
  • [19] Jerrold Siegel, On the structure of $ {B_\infty }(F)$, $ F$ a stable space, Pacific J. Math. 76 (1978), 491-507. MR 506151 (80h:55017)
  • [20] James Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239-246. MR 0154286 (27:4235)
  • [21] Renè Thom, L'homologie des espaces fonctionnels, Colloque de Topologie Algebrique, Louvain, 1956.
  • [22] Tsuneyo Yamanoshita, On the spaces of self homotopy equivalences for fibre spaces, Kodai Math. J. 10 (1987), 127-142. MR 879390 (88f:55019)
  • [23] -, On the spaces of self homotopy equivalences of certain CW complexes, J. Math. Soc. Japan 37 (1985), 455-470. MR 792987 (86k:55004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P10

Retrieve articles in all journals with MSC: 55P10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1065954-7
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society