Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An upper bound for the sum $ \sum\sp {a+H}\sb {n=a+1}f(n)$ for a certain class of functions $ f$


Authors: Edward Dobrowolski and Kenneth S. Williams
Journal: Proc. Amer. Math. Soc. 114 (1992), 29-35
MSC: Primary 11L40
DOI: https://doi.org/10.1090/S0002-9939-1992-1068118-6
MathSciNet review: 1068118
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a certain class of functions $ f:Z \to C$ an upper bound is obtained for the sum $ \sum\nolimits_{n = a + 1}^{a + H} {f\left( n \right)} $. This bound is used to give a proof of a classical inequality due to Pólya and Vinogradov that does not require the value of the modulus of the Gauss sum and to obtain an estimate of the sum of Legendre symbols $ \sum\nolimits_{x = 1}^H {( ( {R{g^x} + S} )/p} ) $, where $ g$ is a primitive root of the odd prime $ p,1 \leq H \leq p - 1$ and $ RS$ is not divisible by $ p$.


References [Enhancements On Off] (What's this?)

  • [1] Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976. MR 0434929 (55:7892)
  • [2] R. Ayoub, An introduction to the analytic theory of numbers, Math. Surveys Monogr. vol. 10, Amer. Math. Soc., Providence, R.I., 1963. MR 0160743 (28:3954)
  • [3] D. A. Burgess, On a conjecture of Norton, Acta Arith. 27 (1975), 265-277. MR 0364125 (51:380)
  • [4] -, On character sums and $ L$-series, Proc. London Math. Soc. (3) 12 (1962), 193-206. MR 0132733 (24:A2570)
  • [5] Adolf Hildebrand, On the constant in the Pólya-Vinogradov inequality, Canad. Math. Bull. 31 (1988), 347-352. MR 956367 (89k:11072)
  • [6] E. Landau, Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen, Nachrichten Königl. Ges. Wiss. Gottingen (1918), 79-97.
  • [7] K. K. Norton, On character sums and power residues, Trans. Amer. Math. Soc. 167 (1972), 203-226. MR 0296034 (45:5095)
  • [8] G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Gött. Nachr. (1918), 21-29.
  • [9] I. Schur, Einige Bemerkungen zur vorstehenden Arbeit des Herrn G. Pólya, Nachrichten Königl. Ges. Wiss. Göttingen (1918), 30-36.
  • [10] I. M. Vinogradov, Über die Verteilung der quadratischen Reste und Nichtreste, J. Soc. Phys. Math. Univ. Permi 2 (1919), 1-4.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11L40

Retrieve articles in all journals with MSC: 11L40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1068118-6
Keywords: Inequality, character sum, Pólya-Vinogradov inequality
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society