Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the ideal structure of the Nevanlinna class


Author: Reiner Martin
Journal: Proc. Amer. Math. Soc. 114 (1992), 135-143
MSC: Primary 46J20; Secondary 30H05, 46J15
MathSciNet review: 1069291
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ N$ denote the Nevanlinna class, i.e. the algebra of holomorphic functions of bounded characteristic in the open unit disc. We study analytic conditions for a finitely generated ideal to be equal to the whole algebra $ N$. Then we characterize the finitely generated prime ideals containing a nontangential interpolating Blaschke product. Further, we give an example of an ideal of $ N$ whose closure in the natural metric on $ N$ is not an ideal.


References [Enhancements On Off] (What's this?)

  • [1] Peter L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • [2] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • [3] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008
  • [4] A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canad. J. Math. 21 (1969), 531–534. MR 0247102
  • [5] Raymond Mortini, Zur Idealstruktur von Unterringen der Nevanlinna-Klasse 𝑁, Travaux mathématiques, I, Sém. Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg, 1989, pp. 81–91 (German). MR 1264197
  • [6] K. V. Rajeswara Rao, On a generalized corona problem, J. Analyse Math. 18 (1967), 277–278. MR 0210910
  • [7] James W. Roberts and Manfred Stoll, Prime and principal ideals in the algebra 𝑁⁺, Arch. Math. (Basel) 27 (1976), no. 4, 387–393. MR 0422639
  • [8] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1986.
  • [9] Joel H. Shapiro and Allen L. Shields, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), no. 4, 915–936. MR 0390227
  • [10] Kenneth Stephenson, Isometries of the Nevanlinna class, Indiana Univ. Math. J. 26 (1977), no. 2, 307–324. MR 0432905
  • [11] Michael von Renteln, Ideals in the Nevanlinna class 𝑁, Mitt. Math. Sem. Giessen Heft 123 (1977), 57–65. Dem Andenken an Karl Maruhn gewidmet. MR 0486534

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J20, 30H05, 46J15

Retrieve articles in all journals with MSC: 46J20, 30H05, 46J15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1992-1069291-6
Article copyright: © Copyright 1992 American Mathematical Society