Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the ideal structure of the Nevanlinna class


Author: Reiner Martin
Journal: Proc. Amer. Math. Soc. 114 (1992), 135-143
MSC: Primary 46J20; Secondary 30H05, 46J15
DOI: https://doi.org/10.1090/S0002-9939-1992-1069291-6
MathSciNet review: 1069291
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ N$ denote the Nevanlinna class, i.e. the algebra of holomorphic functions of bounded characteristic in the open unit disc. We study analytic conditions for a finitely generated ideal to be equal to the whole algebra $ N$. Then we characterize the finitely generated prime ideals containing a nontangential interpolating Blaschke product. Further, we give an example of an ideal of $ N$ whose closure in the natural metric on $ N$ is not an ideal.


References [Enhancements On Off] (What's this?)

  • [1] Peter L. Duren, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [2] John B. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 628971 (83g:30037)
  • [3] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, NJ, 1962. MR 0133008 (24:A2844)
  • [4] A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canad. J. Math. 21 (1969), 531-534. MR 0247102 (40:371)
  • [5] Raymond Mortini, Zur Idealstruktur von Unterringen der Nevanlinnaklasse $ N$, Sém. Math. Luxembourg 1 (1989), 81-91. MR 1264197 (95f:30049)
  • [6] K. V. Rajeswara Rao, On a generalized corona problem, J. Analyse Math. 18 (1967), 277-278. MR 0210910 (35:1795)
  • [7] James W. Roberts and Manfred Stoll, Prime and principal ideals in the algebra $ {N^ + }$, Arch. Math. (Basel) 27 (1976), 387-393. MR 0422639 (54:10625)
  • [8] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1986.
  • [9] Joel H. Shapiro and Allen L. Shields, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), 915-936. MR 0390227 (52:11053)
  • [10] Kenneth Stephenson, Isometries of the Nevanlinna class, Indiana Univ. Math. J. 26 (1977), 307-324. MR 0432905 (55:5885)
  • [11] Michael von Renteln, Ideals in the Nevanlinna class $ N$, Mitt. Math. Sem. Giessen 123 (1977), 57-65. MR 0486534 (58:6257)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J20, 30H05, 46J15

Retrieve articles in all journals with MSC: 46J20, 30H05, 46J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1069291-6
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society