On the ideal structure of the Nevanlinna class
Author:
Reiner Martin
Journal:
Proc. Amer. Math. Soc. 114 (1992), 135-143
MSC:
Primary 46J20; Secondary 30H05, 46J15
DOI:
https://doi.org/10.1090/S0002-9939-1992-1069291-6
MathSciNet review:
1069291
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let denote the Nevanlinna class, i.e. the algebra of holomorphic functions of bounded characteristic in the open unit disc. We study analytic conditions for a finitely generated ideal to be equal to the whole algebra
. Then we characterize the finitely generated prime ideals containing a nontangential interpolating Blaschke product. Further, we give an example of an ideal of
whose closure in the natural metric on
is not an ideal.
- [1]
Peter L. Duren, Theory of
spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
- [2] John B. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 628971 (83g:30037)
- [3] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, NJ, 1962. MR 0133008 (24:A2844)
- [4] A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canad. J. Math. 21 (1969), 531-534. MR 0247102 (40:371)
- [5]
Raymond Mortini, Zur Idealstruktur von Unterringen der Nevanlinnaklasse
, Sém. Math. Luxembourg 1 (1989), 81-91. MR 1264197 (95f:30049)
- [6] K. V. Rajeswara Rao, On a generalized corona problem, J. Analyse Math. 18 (1967), 277-278. MR 0210910 (35:1795)
- [7]
James W. Roberts and Manfred Stoll, Prime and principal ideals in the algebra
, Arch. Math. (Basel) 27 (1976), 387-393. MR 0422639 (54:10625)
- [8] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1986.
- [9] Joel H. Shapiro and Allen L. Shields, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), 915-936. MR 0390227 (52:11053)
- [10] Kenneth Stephenson, Isometries of the Nevanlinna class, Indiana Univ. Math. J. 26 (1977), 307-324. MR 0432905 (55:5885)
- [11]
Michael von Renteln, Ideals in the Nevanlinna class
, Mitt. Math. Sem. Giessen 123 (1977), 57-65. MR 0486534 (58:6257)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J20, 30H05, 46J15
Retrieve articles in all journals with MSC: 46J20, 30H05, 46J15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1992-1069291-6
Article copyright:
© Copyright 1992
American Mathematical Society