Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ h\sb 0$-torsion bounds in the cohomology of the Steenrod algebra


Author: Kenneth G. Monks
Journal: Proc. Amer. Math. Soc. 114 (1992), 5-9
MSC: Primary 55S10; Secondary 16W30
DOI: https://doi.org/10.1090/S0002-9939-1992-1070527-6
MathSciNet review: 1070527
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we use a technique of M. Hopkins to prove that the cohomology of the finite Hopf subalgebra of the $ \bmod 2$ Steenrod algebra generated by $ \operatorname{Sq}\left( {{2^i}} \right)$ with $ i \leq n$, has $ {h_0}$-torsion bound $ {2^{n + 1}} - n - 2{\text{ for }}n \geq 1$.


References [Enhancements On Off] (What's this?)

  • [1] D. M. Davis, An infinite family in the cohomology of the Steenrod algebra, J. Pure Appl. Algebra 21 (1981), 145-150. MR 614377 (82e:55034)
  • [2] D. M. Davis and M. Mahowald, Ext over the subalgebra $ {\mathcal{A}_2}$ of the Steenrod algebra for stunted projective spaces, Proc. Conf. (Current Trends in Algebraic Topology), Canad. Math. Soc., Vol. 2, Part 1, 1982. MR 686123 (85a:55018)
  • [3] H. R. Margolis, Spectra and the Steenrod algebra, North Holland Math. Library, vol. 29, 1983. MR 738973 (86j:55001)
  • [4] John McCleary, User's guide to spectral sequences, Publish or Perish, Inc., Math. Lecture Series, no. 12, 1985. MR 820463 (87f:55014)
  • [5] John Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171. MR 0099653 (20:6092)
  • [6] Kenneth G. Monks, Nilpotence and torsion in the cohomology of the Steenrod algebra, Trans. Amer. Math. Soc. (to appear). MR 1068931 (92m:55023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S10, 16W30

Retrieve articles in all journals with MSC: 55S10, 16W30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1070527-6
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society