What parts of a measure's support attract zeros of the corresponding orthogonal polynomials?
Authors:
E. B. Saff and Vilmos Totik
Journal:
Proc. Amer. Math. Soc. 114 (1992), 185190
MSC:
Primary 42C05; Secondary 30C99
MathSciNet review:
1077789
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is proved that each "component" of the polynomial convex hull of the support of the generating measure attracts zeros of the corresponding orthogonal polynomials. On the other hand, an example is given showing e.g. that mass points in the support need not attract zeros.
 [1]
G. Freud, Orthogonal polynomials, Akad. Kiadó, Budapest, 1971.
 [2]
E.
B. Saff, Orthogonal polynomials from a complex perspective,
Orthogonal polynomials (Columbus, OH, 1989) NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht, 1990,
pp. 363–393. MR 1100302
(92m:42029), http://dx.doi.org/10.1007/9789400905016_17
 [3]
Herbert
Stahl and Vilmos
Totik, General orthogonal polynomials, Encyclopedia of
Mathematics and its Applications, vol. 43, Cambridge University Press,
Cambridge, 1992. MR 1163828
(93d:42029)
 [4]
Herbert
Stahl and Vilmos
Totik, 𝑛th root asymptotic behavior of orthonormal
polynomials, Orthogonal polynomials (Columbus, OH, 1989) NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci., vol. 294, Kluwer Acad. Publ.,
Dordrecht, 1990, pp. 395–417. MR 1100303
(92g:42015)
 [5]
Pál
Turán, On some open problems of approximation theory,
Mat. Lapok 25 (1974), no. 1–2, 21–75
(1977) (Hungarian). MR 0442540
(56 #921)
 [6]
Harold
Widom, Polynomials associated with measures in the complex
plane, J. Math. Mech. 16 (1967), 997–1013. MR 0209448
(35 #346)
 [1]
 G. Freud, Orthogonal polynomials, Akad. Kiadó, Budapest, 1971.
 [2]
 E. B. Saff, Orthogonal polynomials from a complex perspective, Orthogonal Polynomials: Theory and Practice (P. Nevai, ed.), Kluwer Academic, Dordrecht, 1990, pp. 363393. MR 1100302 (92m:42029)
 [3]
 H. Stahl and V. Totik, General orthogonal polynomials, Encyclopedia of Mathematics, Cambridge Univ. Press, New York (to appear). MR 1163828 (93d:42029)
 [4]
 , th root asymptotic behavior of orthonormal polynomials, Orthogonal Polynomials: Theory and Practice (P. Nevai, ed.), Kluwer Academic, Dordrecht, 1990, pp. 395417. MR 1100303 (92g:42015)
 [5]
 P. Turán, Some open problems of approximation theory, Mat. Lapok 25 (1974), 2175. (Hungarian) MR 0442540 (56:921)
 [6]
 H. Widom, Polynomials associated with measures in the complex plane, J. Math. Mech. 16 (1967), 9971013. MR 0209448 (35:346)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
42C05,
30C99
Retrieve articles in all journals
with MSC:
42C05,
30C99
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919921077789X
PII:
S 00029939(1992)1077789X
Article copyright:
© Copyright 1992
American Mathematical Society
