Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Some remarks on the stability of a property related to the mean value theorem for harmonic functions

Author: Burton Randol
Journal: Proc. Amer. Math. Soc. 114 (1992), 175-179
MSC: Primary 31A05; Secondary 30C15, 31B05
MathSciNet review: 1079707
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ u$ is harmonic and of mean zero over a compact domain $ D$. We study the extent to which the zero-set of $ u$ must penetrate into the interior of $ D$.

References [Enhancements On Off] (What's this?)

  • [1] Phillip J. Davis, Double integrals expressed as single integrals or interpolatory functionals, J. Approx. Theory 5 (1972), 276-307. MR 0377069 (51:13243)
  • [2] -, The Schwarz function and its applications, Carus Math. Monographs, no. 17, Math. Assoc. America, Washington, D.C., 1974. MR 0407252 (53:11031)
  • [3] Bernard Epstein, On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 13 (1962), 830. MR 0140700 (25:4114)
  • [4] G. Mittag-Leffler, Sur la représentation analytique d'une branche uniforme d'une fonction monogène, Acta Math. 29 (1905), 101-181. MR 1555012
  • [5] Makoto Sakai, Quadrature domains, Lecture Notes in Math., vol. 934, Springer-Verlag, New York, 1982. MR 663007 (84h:41047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31A05, 30C15, 31B05

Retrieve articles in all journals with MSC: 31A05, 30C15, 31B05

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society