Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Bifurcation of limit cycles: geometric theory

Author: L. M. Perko
Journal: Proc. Amer. Math. Soc. 114 (1992), 225-236
MSC: Primary 34C23; Secondary 34C05, 34C25
MathSciNet review: 1086341
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Multiple limit cycles play a basic role in the theory of bifurcations. In this paper we distinguish between singular and nonsingular, multiple limit cycles of a system defined by a one-parameter family of planar vector fields. It is shown that the only possible bifurcation at a nonsingular, multiple limit cycle is a saddle-node bifurcation and that locally the resulting stable and unstable limit cycles expand and contract monotonically as the parameter varies in a certain sense. Furthermore, this same type of geometrical behavior occurs in any one-parameter family of limit cycles experiencing a saddle-node type bifurcation except possibly at a finite number of points on the multiple limit cycle.

References [Enhancements On Off] (What's this?)

  • [1] A. A. Andronov et al., Theory of bifurcations of dynamical systems on a plane, Kefer Press, Jerusalem, 1971.
  • [2] T. R. Blows and L. M. Perko, Bifurcation of limit cycles from centers, S.I.A.M. J. Math. Anal.submitted.
  • [3] C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochrones, J. Differential Equations 91 (1991), 268-326. MR 1111177 (92e:58143)
  • [4] S. N. Chow and J. K. Hale, Methods of bifurcation theory, Springer-Verlag, New York, 1982. MR 660633 (84e:58019)
  • [5] G. F. D. Duff, Limit cycles and rotated vector fields, Ann. of Math. (2) 67 (1953), 15-31. MR 0053301 (14:751c)
  • [6] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Appl. Math. Sci., vol. 42, Springer-Verlag, New York, 1983. MR 709768 (85f:58002)
  • [7] L. M. Perko, Differential equations and dynamical systems, Texts in Appl. Math., vol. 7, Springer-Verlag, New York, 1990.
  • [8] -, Global families of limit cycles of planar analytic systems, Trans. Amer. Math. Soc., 322 (1990), 627-656. MR 998357 (91c:58114)
  • [9] -, Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane, J. Differential Equations 18 (1975), 63-86. MR 0374552 (51:10752)
  • [10] H. Poincaré, Mémorie sur les courbes définies par une equation différentielle, J. Mathématiques 7 (1881), 375-422; Oeuvre, Gauthier-Villar, Paris, 1880-1890, pp. 1-221.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C23, 34C05, 34C25

Retrieve articles in all journals with MSC: 34C23, 34C05, 34C25

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society