THE C¹ CLOSING LEMA FOR ENDOMORPHISMS WITH FINITELY MANY SINGULARITIES

LAN WEN

(Communicated by Kenneth R. Meyer)

Abstract. The C¹ closing lemma for endomorphisms with finitely many singularities is obtained by combining the C¹ closing lemma for nonsingular endomorphisms together with a technique of L. S. Young.

1. Introduction

Let \(M \) be a compact Riemannian manifold without boundary, and let \(F \) be the set of \(C¹ \) maps of \(M \) with finitely many singularities, endowed with the \(C¹ \) topology. In this paper we prove the following:

Theorem A. Let \(f \) be a \(C¹ \) map of \(M \) with finitely many singularities, and \(\omega \) be a nonwandering point of \(f \). Then for any \(C¹ \) neighborhood \(\mathcal{U} \) of \(f \) in \(F \), there is a \(g \in \mathcal{U} \) such that \(\omega \) is a periodic point of \(g \).

Recall that a point \(x \) is a singularity of \(f \) if \(T_x f \) is not injective. A point \(x \) is nonwandering of \(f \) if for any neighborhood \(U \) of \(x \) in \(M \), \((f^n U) \cap U \) is nonempty for some \(n \geq 1 \), and periodic of \(f \) if \(f^n x = x \) for some \(n \geq 1 \).

The proof of Theorem A is based on the \(C¹ \) closing lemma of nonsingular endomorphisms [11] on the one hand, and a technique of L. S. Young [12] on the other.

2. Preliminaries

In this section we collect from [11] some definitions and theorems needed in this paper.

By a tree \(\mathcal{T} = (Q, f) \) we mean an infinite sequence of mutually disjoint nonempty finite sets \(Q_0, Q_1, \ldots, Q_n, \ldots \), where \(Q_0 \) consists of a single point \(q_0 \), together with a map \(f : Q - \{q_0\} \to Q \), where \(Q = \bigcup_{n=0}^{\infty} Q_n \), such that \(f \) maps \(Q_n \) into \(Q_{n-1} \) for each \(n = 1, 2, \ldots \). An infinite sequence \(q_0, q_1, \ldots, q_n, \ldots \) is called an infinite branch of \(\mathcal{T} \) if \(f(q_n) = q_{n-1} \) for each \(n = 1, 2, \ldots \). A finite sequence \(q_0, q_1, \ldots, q_k \) is called a finite branch of \(\mathcal{T} \) if \(f(q_n) = q_{n-1} \) for each \(n = 1, 2, \ldots, k \), and if \(f^{-1}\{q_k\} \) is empty. A tree

Received by the editors December 26, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 58FXX.
Research sponsored by China National Science Foundation and China National Postdoctoral Research Foundation.
\(\mathcal{F} = (Q, f) \) is called complete if \(f \) is onto. Clearly, \(\mathcal{F} \) is complete iff \(\mathcal{F} \) has only infinite branches. Occasionally, we may talk about finite trees and their branches. The definitions are obvious. Here we only mention that a finite tree is called complete if all its branches have the same number of terms.

By a tree of isomorphisms we mean a collection of linear isomorphisms parametrized by a tree \(\mathcal{F} \). More precisely, this means that we associate to each \(q \in Q \) an \(m \)-dimensional inner product space \(V_q \), and to each \(q \neq q_0 \) a linear isomorphism \(T_q : V_q \to V_{q_0} \).

The main result needed in this paper is the following \(\varepsilon \)-kernel avoiding transition theorem of [11]:

Theorem 2.1. Given a complete tree of isomorphisms \((\mathcal{F}, T_q) \) and \(\varepsilon > 0 \). There is a number \(p > 2 \) and an integer \(\mu \geq 1 \) such that: For any finite ordered set \(P = \{p_0, p_1, \ldots, p_t\} \) in \(V_{q_0} \), there is a point \(y \in P \cap (B(p_t, p|p_0 - p_t|)) \) such that for any branch \(\Sigma = \{q_0, q_1, \ldots, q_n, \ldots\} \) of \(\mathcal{F} \), there is a point \(w \in P \cap (B(p_t, p|p_0 - p_t|)) \), where \(w \) is before \(y \) in the order of \(P \), together with \(\mu + 1 \) points \(c_0, c_1, \ldots, c_\mu \) in \(B(p_t, p|p_0 - p_t|) \), not necessarily distinct, satisfying the following two conditions (a) and (b).

(a) \(c_0 = w \), \(c_\mu = y \), and
(b) \[|T_{q_n}^{-1}(c_n) - T_{q_n}^{-1}(c_{n+1})| \leq \varepsilon d(T_{q_n}^{-1}(c_n+1), T_{q_n}^{-1}(A)) \] for \(n = 0, 1, \ldots, \mu - 1 \), where \(T_{q_0} \) stands for the identity, \(A = (P(w, y)) \cup (\partial B(p_t, p|p_0 - p_t|)) \), \(P(w, y) = \{p \in P|p \text{ is after } w \text{ and before } y\} \), and \(d \) is the distance on \(V_{q_0} \). Q.E.D.

We also need the following two basic perturbation lemmas that deal with the \(\varepsilon \)-kernel lifts and the local linearizations for \(C^1 \) maps. They are essentially the same as Lemmas 4.1 and 4.2 of [11] with some minor changes. Let \(C^1(M) \) be the set of \(C^1 \) maps of \(M \) into itself. For simplicity we assume that \(M \) is Riemann embedded into some \(R^d \). Then \(C^1(M) \) has a \(C^1 \) metric \(d_1 \) inherited from \(C^1(M, R^d) \) compatible with its \(C^1 \) topology. Fix a \(\zeta > 0 \) such that \(\exp_p \) embeds \(\{u \in T_p M | |u| \leq \zeta \} \) into \(M \) for each \(p \in M \).

Lemma 2.2. For any \(\eta > 0 \), there is an \(\varepsilon > 0 \) such that for any \(f \in C^1(M) \), any \(p \in M \), and any two points \(v_1, v_2 \in T_p M \) with \(B(v_2, |v_1 - v_2|/\varepsilon) \subset \{u \in T_p M | |u| \leq \zeta \} \), there is a diffeomorphism \(h = h_p, \varepsilon, v_1, v_2 : M \to M \), called an \(\varepsilon \)-kernel lift, such that:

1. \(h(\exp_p(v_2)) = \exp_p(v_1) \);
2. \(\text{supp}(h) \subset \exp_p(B(v_2, |v_1 - v_2|/\varepsilon)) \), here the support means the closure of the set where \(h \) differs from the identity;
3. \(d_1(hf, f) < \eta \). Q.E.D.

Now let \(f \in C^1(M) \) be given. Before stating Lemma 2.3, recall that the negative orbit of \(p \in M \) under \(f \) is defined as \(\text{Orb}^{-}(p) = \text{Orb}^{-}(p) = \bigcup_{n=1}^{\infty} f^{-n}\{p\} \), where \(f^{-n}\{p\} \) denotes the preimage of \((f^n)^{-1}\{p\} \). Given an integer \(\mu \geq 1 \), if \(\bigcup_{n=1}^{\mu} f^{-n}\{p\} \) contains no singularities of \(f \), then \(f \) is a local diffeomorphism near each \(q \in \bigcup_{n=1}^{\mu} f^{-n}\{p\} \). Thus \(f^{-n}\{p\} \) is finite for each \(n = 1, 2, \ldots, \mu \), as \(M \) is compact. Assume further that all terms in \(\bigcup_{n=0}^{\mu} f^{-n}\{p\} \) are distinct. In this case we may find a neighborhood \(W \) of \(p \) in \(M \), called a \(\mu \)-dynamical neighborhood of \(p \), such that each connected component \(U \) of
THE C\(^1\) CLOSING LEMMA FOR ENDOMORPHISMS

\[\bigcup_{n=0}^{\mu} f^{-n}(W) \]

is a neighborhood of a unique point \(q \in \bigcup_{n=0}^{\mu} f^{-n}\{p\} \), denoted as \(U = W(q) = W_f(q) \) and called the \(W\)-component at \(q \), and that \(f^n \) maps \(W(q) \) onto \(W \) whenever \(f^n(q) = p \), \(n = 1, 2, \ldots, \mu \). Notice that \(\bigcup_{n=0}^{\mu} f^{-n}\{p\} \) forms in this case a finite tree, which may not be complete.

In [11, Lemma 4.2], where \(f \) was a nonsingular endomorphism, we did a local linearization along a set of the form \(\bigcup_{n=0}^{\mu} f^{-n}\{p\} \), which was a finite complete tree. In the present paper, as noticed above, \(\bigcup_{n=0}^{\mu} f^{-n}\{p\} \) is still a finite tree, but may not be complete. Although a local linearization can also be made along a finite noncomplete tree in general, for our purpose, we do a local linearization along a subset of it, which does form a finite complete tree. This is the following

Lemma 2.3. Let \(f \in C^1(M) \), \(p \in M \), and an integer \(\mu \geq 1 \) be given. Assume that all terms of \(\bigcup_{n=0}^{\mu+1} f^{-n}\{p\} \) are distinct and are not singularities of \(f \). Let \(Q_0, Q_1, \ldots, Q_{\mu+1} \) be nonempty sets in \(M \) such that \(Q_0 = \{p\} \), and that \(f(Q_n) = Q_{n-1} \) for each \(n = 1, 2, \ldots, \mu + 1 \). Then for any \(\eta > 0 \), there is a \(\lambda > 0 \), and a map \(f_1 \in C^1(M) \), called a local linearization of \(f \), with the following properties (1)–(5).

Write \(W = \{u \in T_p M | u \leq \lambda\} \), \(V = \{u \in T_p M | u \leq \lambda/4\} \), \(W = \exp_p(W'), V = \exp_p(V') \).

1. \(W \) is \((\mu + 1)\)-dynamical for both \(f \) and \(f_1 \), and the \(W\)-component for \(f \) and for \(f_1 \) are the same, i.e. \(W_f(q) = W_{f_1}(q) \), for each \(q \in \bigcup_{n=0}^{\mu+1} Q_n \);
2. \(f_1 = \exp_{f(q)}(T_q f) \exp_q^{-1} \) on \(V_f(q) \) if \(q \in \bigcup_{n=0}^{\mu+1} Q_n \);
3. \(f_1^{\mu+1} = f^{\mu+1} \) on \(W(q) \) if \(q \in Q_{\mu+1} \). In particular, if \(q \in Q_{\mu+1} \) then \(f_1 = \exp_{f(q)}(T_q f) f^{\mu+1} \exp_q^{-1} f^{\mu+1} \) on \(V(q) \). Note that \(V_f(q) = V_{f_1}(q) \) here and we have written both of them as \(V(q) \);
4. \(f_1 = f \) on \(M - \bigcup\{W(q) | q \in \bigcup_{n=0}^{\mu+1} Q_n\} \);
5. \(d_1(f_1, f) < \eta \). Q.E.D.

Roughly, \(f_1 \) near \(q \in \bigcup_{n=1}^{\mu+1} Q_n \) is just \(T_q f \) module those \(\exp \), and \(f_1 \) near \(q \in Q_{\mu+1} \) cancels out these linearizations. The following corollary is clear.

Corollary 2.4. If \(x \in W \), \(f^k x \in W(q) \) for some \(q \in f^{-\mu-1}\{p\} \), and if the orbit \(f x, f^2 x, \ldots, f^{k-1} x \) never meets \(W(q) \) for all \(q \in \bigcup_{n=1}^{\mu+1}(f^{-n}\{p\} - Q_n) \), then \(f^k x = f^k x_1 \). Q.E.D.

Roughly, this is because whenever the orbit \(f x, f^2 x, \ldots, f^{k-1} x \) meets the area of changes, they meet at a whole \(\mu + 1 \) successive iterates from some \(W(q), q \in Q_{\mu+1} \), to \(W(p) \). Thus those changes cancel out.

3. **Proof of Theorem A**

First we prove an easy lemma that is used in Case 1 of the proof of Theorem A. Let \(\Omega(f) \) and \(P(f) \) denote the sets of nonwandering points and periodic points of \(f \) respectively.

Lemma 3.1. Let \(f \in C^1(M) \), \(\sigma \in \Omega(f) - P(f) \). If \(\text{Orb}^{-}(\sigma) \) contains no singularities of \(f \), then \(\text{Orb}^{-}(\sigma) \cap \Omega(f), f \) forms a complete tree.

Proof. First we remark that if \(p \in \Omega(f) \), and if \(f^{-1}\{p\} \) contains no singularities of \(f \), then \(f^{-1}\{p\} \cap \Omega(f) \) is nonempty. Actually, since \(p \) is nonwandering, there is a sequence \(\{x_k\} \) in \(M \) and a sequence of positive integers...
\(\{n_k\} \) such that \(\{x_k\} \) and \(\{f^{n_k}(x_k)\} \) both converge to \(p \). The set \(\{f^{n_k-1}(x_k)\} \) has some limit point \(q \) since \(M \) is compact. Clearly, \(q \in f^{-1}\{p\} \). Since \(q \) is not a singularity of \(f \), \(f \) is a local diffeomorphism near \(q \). It follows that \(q \in \Omega(f) \). This proves the remark.

Now let \(Q_n = f^{-n}\{\sigma\} \cap \Omega(f) \), \(n = 0, 1, 2, \ldots \). It follows from the above remark that \(Q_n \) is nonempty for each \(n \geq 0 \). It also follows that \(f \) maps \(Q_n \) onto \(Q_{n-1} \) for each \(n \geq 1 \). Now \(\sigma \) is not periodic of \(f \), hence all terms in \(\text{Orb}^{-}(\sigma) \) are distinct. Therefore \((\text{Orb}^{-}(\sigma) \cap \Omega(f), f) \) forms a complete tree. Q.E.D.

Now we prove Theorem A.

Proof of Theorem A. Let \(U \) be a small neighborhood of \(\omega \) in \(M \). It suffices to find a \(g \in \mathcal{U} \), such that \(g \) has a periodic point in \(U \), since another perturbation allows us to push this periodic point onto \(\omega \) (see [2, 5]). We assume that \(\omega \) is not periodic already of \(f \), and divide the proof into two cases.

Case 1. There is a \(\sigma \in \text{Orb}^{-}(\omega) \cap \Omega(f) \) such that \(\text{Orb}^{-}(\sigma) \) does not contain singularities of \(f \).

Assume that \(f^s(\sigma) = \omega \). Let \(N \) be a neighborhood of \(\sigma \) such that \(f^s(N) \subset U \). Since \(\omega \) is nonperiodic of \(f \), so is \(\sigma \). Then by Lemma 3.1, \((\text{Orb}^{-}(\sigma) \cap \Omega(f), f) \) forms a complete tree. The proof in Case 1 is very much similar to the proof of Theorem B of [11]. The difference is that \(\text{Orb}^{-}(\sigma) \) this time is just a tree that may not be complete. For explicitly we write down the proof in all details as follows.

Take any \(\eta > 0 \) such that the \(\eta \)-ball of \(f \) in \(F_{\text{End}}(M) \) is contained in \(\mathcal{U} \). By Lemma 2.2, there is an \(\epsilon > 0 \) such that

\[
d_1(hf, f) < \eta/2
\]

for any \(f \in F_{\text{End}}(M) \), where \(h \) is any \(\epsilon \)-kernel lift.

Denote by \(\mathcal{T} \) the complete tree \((\text{Orb}^{-}(\sigma) \cap \Omega(f), f) \), and denote by \((\mathcal{T}, T_q) \) the tree of isomorphisms, where \(q \in \text{Orb}^{-}(\sigma) \cap \Omega(f) - \{\sigma\} \), and \(T_q = T_qf^n \) if \(f^nq = \sigma \).

Let \(\rho > 2, \mu \geq 1 \) be the two numbers guaranteed by Theorem 2.1 respecting \(\{\mathcal{T}, T_q\} \) and \(\epsilon > 0 \). For the \(f, \sigma, \mu \), there is by Lemma 2.3 a \(\lambda > 0 \) and a local linearization \(f_1 \) with the following properties (1)–(5). Write \(W'' = \{u \in T_\sigma M : |u| \leq \lambda\} \), \(V' = \{u \in T_\sigma M : |u| \leq \lambda/4\} \), \(W = \exp_\sigma(W'') \), \(V = \exp_\sigma(V') \).

(1) \(W \) is \((\mu + 1) \)-dynamical for both \(f \) and \(f_1 \), and \(W_f(q) = W_{f_1}(q) \) for each \(q \in \bigcup_{n=1}^{\mu+1} f^{-n}\{\sigma\} \cap \Omega(f) \);

(2) \(f_1 = \exp_{f_1}(T_qf) \exp_q^{-1} \) on \(V_f(q) \) if \(q \in \bigcup_{n=1}^\mu f^{-n}\{\sigma\} \cap \Omega(f) \);

(3) \(f^{n+1}_1 = f^{n+1} \) on \(W(q) \) if \(q \in f^{-\mu-1}\{\sigma\} \cap \Omega(f) \). In particular, if \(q \in f^{-\mu-1}\{\sigma\} \cap \Omega(f) \), then \(f_1 = \exp_{f_1}(T_qf) f^{\mu+1} \exp_q^{-1} \) on \(V(q) \);

(4) \(f_1 = f \) on \(M - \bigcup\{W(q) : q \in \bigcup_{n=1}^{\mu+1} f^{-n}\{\sigma\} \cap \Omega(f) \} \);

(5) \(d_1(f_1, f) < \eta/2 \).

Clearly, \(f_1 \in F_{\text{End}}(M) \).

By shrinking \(W \) if necessary, we assume that \(W \subset N \), and that \(f^k(W(q)) \cap (W(q)) = \emptyset \) for any \(k \geq 1 \) and any \(q \in \bigcup_{n=1}^{\mu+1} f^{-n}\{\sigma\} \). Put a metric \(d'' \) on \(W \) by defining

\[
d''(p, q) = |u - v|,
\]
where $p, q \in W$, $u = \exp_{-1}(p)$, $v = \exp_{-1}(q)$. Since σ is nonwandering of f, there are two points p and $f^\psi(p)$, where $\psi \geq 1$ is an integer, such that the ball $B(f^\psi(p), pd'(p, f^\psi(p)); d')$ is contained in V. Let $P = \{p, fp, \ldots, f^\psi p\} \cap V$. Say, $P = \{p_0, p_1, \ldots, p_t\}$. Note that $p_0 = p, p_t = f^\psi p$. Hence $B(p_t, pd'(p_0, p_t); d') \subset V$. Let $P' = \exp_{-1}(P), p'_t = \exp_{-1}(p_t)$. Then $P' = \{p'_0, p'_1, \ldots, p'_t\}$.

By Theorem 2.1, there is a point $y' \in P' \cap B(p'_t, \rho|p'_0 - p'_t|$) such that for any branch $\Sigma = \{q_0, q_1, \ldots, q_n, \ldots\}$ of $\Orb_?(\sigma) \cap \Omega(f)$, there is a point $w'(\Sigma) \in P' \cap B(p'_t, \rho|p'_0 - p'_t|$), where $w'(\Sigma)$ is before y' in P', together with $\mu + 1$ points $c'_0(\Sigma), c'_1(\Sigma), \ldots, c'_\mu(\Sigma)$ in $B(p'_t, \rho|p'_0 - p'_t|$), not necessarily distinct, satisfying the following two conditions (a) and (b).

(a) $c'_0(\Sigma) = w'(\Sigma)$, $c'_\mu(\Sigma) = y'$; and
(b) $|\left((T_{q_n}f^n)^{-1}(c'_n(\Sigma)) - (T_{q_n}f^n)^{-1}(c'_{n+1}(\Sigma)) \right) | \\
\leq \varepsilon d((T_{q_n}f^n)^{-1}(c'_0(\Sigma)), (T_{q_n}f^n)^{-1}(A))$

for $n = 0, 1, 2, \ldots, \mu - 1$, where $A = (P'(w'(\Sigma), y')) \cup \partial B(p'_t, \rho|p'_0 - p'_t|)$, and $P'(w'(\Sigma), y') = \{p \in P' \mid p$ is before y' and after $w'(\Sigma)\}$.

Let $w(\Sigma) = \exp_{a}(w'(\Sigma)), y = \exp_{a}(y')$. Then $w(\Sigma)$ and y are both in P. Hence there is an integer $\phi(\Sigma) \geq 1$ such that $f^\phi(\Sigma)(w(\Sigma)) = y$. Note that the orbit $f(w(\Sigma)), f^2(w(\Sigma)), \ldots, f^\phi(\Sigma)(w(\Sigma))$ never meets $W(q)$ for $q \in \bigcup_{n=1}^{\mu + 1} f^{-n}\{\sigma\} - \Omega(f)$ since, for those q, $W(q)$ is wandering (i.e. $f^k(W(q)) \cap W(q) = \varnothing$ for any $k \geq 1$). Thus it must meet a $W(q)$ for some $q \in f^{-\mu - 1}\{\sigma\} \cap \Omega(f)$, since $\Orb_?(\sigma) \cap \Omega(f)$ is a complete tree. Hence $\phi(\Sigma) > \mu + 1$. Let $z(\Sigma) = f^{\phi(\Sigma) - \mu - 1}(w(\Sigma))$. It is ready to see that $z(\Sigma)$ actually does not depend on Σ, since $w(\Sigma)$ and y are both in P, and $f^{\phi(\Sigma)}(w(\Sigma)) = y$, and since μ and y do not depend on Σ. Thus we simply write

$z = f^{\phi(\Sigma) - \mu - 1}(w(\Sigma))$

for any branch Σ. Clearly, $f^{\mu + 1}(z) = y$.

Since $y \in V$, there is a unique point $\sigma_{\mu+1}$, here $\sigma_{\mu+1}$ is in $f^{-\mu - 1}\{\sigma\} \cap \Omega(f)$ as just noticed above, such that

$z \in V(\sigma_{\mu+1})$.

Let Γ be any branch of $\Orb_?(\sigma) \cap \Omega(f)$ that contains $\sigma_{\mu+1}$. Say $\Gamma = \{\sigma_0, \sigma_1, \ldots, \sigma_n, \ldots\}$. Let w', together with $c'_0, c'_1, \ldots, c'_\mu$, be guaranteed by Theorem 2.1 respecting Γ, and let $\phi > \mu + 1$ be the integer such that $f^\phi(w) = y$, where $w = \exp_{a}(w')$. Note that $w \in N$.

For each σ_n, $n = 0, 1, \ldots, \mu + 1$, let h_{σ_n} be the ε-kernel lift obtained by treating in Lemma 2.2 $p = \sigma_n, v_1 = (T_{\sigma_n}f^n)^{-1}(c'_n)$, and $v_2 = (T_{\sigma_n}f^n)^{-1}(c'_{n+1})$. Define a map g by

$g = \begin{cases} h_{\sigma_n} \circ f^\phi & \text{on } W(\sigma_{n+1}), \ n = 0, 1, \ldots, \mu - 1, \\ f^\phi & \text{on the rest of } M. \end{cases}$

Then $q \in F \End^{1}(M)$ and $d_1(g, f_1) < \eta/2$. Hence

$d_1(g, f) < \eta$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We now verify that w is periodic of g. It suffices to verify that $g^{\phi - \mu - 1}(w) = z$ and $g^{\mu + 1}(z) = w$. By the condition (b) above, the g orbit from w to z never touches the supports of these lifts. Then $g^{\phi - \mu - 1}(w) = f_1^{\phi - \mu - 1}(w)$. But $f_1^{\phi - \mu - 1}(w) = f^{\phi - \mu - 1}(w)$ by Corollary 2.4. Therefore,

$$g^{\phi - \mu - 1}(w) = f^{\phi - \mu - 1}(w) = z.$$

It remains to verify that $g^{\mu + 1}(z) = w$. By the condition (3) above,

$$g(z) = f_1(z) = \exp_{\sigma}(T_\sigma f^\mu)^{-1} \exp_{\sigma}^{-1} f^{\mu + 1}(z)$$

because $z \in V(\sigma_{\mu + 1})$. Hence

$$g(z) = \exp_{\sigma}(T_\sigma f^\mu)^{-1}(y)$$

because $f^{\mu + 1}(z) = y$. Thus these lifts $h_{\sigma_{\mu - 1}}, h_{\sigma_{\mu - 2}}, \ldots, h_{\sigma_0}$ give rise to

$$g^\mu(g(z)) = w$$

by condition (2) above. This verifies that w is periodic of g.

Now since σ is not periodic of f, we may take W so small in advance that $f^n(W)$ does not intersect $\bigcup\{W(p) | p \in \bigcup_{n=1}^{\infty} f^{-n}(\sigma)\}$ for $n = 1, 2, \ldots, s$, here s is the same integer that appeared in the beginning of Case 1 such that $f^s(\sigma) = \omega$. Thus $g^s(w) = f^s(w)$ is a periodic point of g in U. This proves Theorem A for Case 1.

Case 2. No such σ exists.

First we note that there is an $n_0 \geq 1$ such that $f^{-n}(\omega)$ does not contain singularities of f for $n \geq n_0$. This is because otherwise there would be a singularity p of f and two integers $1 \leq n_1 < n_2$ such that $p \in (f^{-n_1}(\omega)) \cap (f^{-n_2}(\omega))$ because f has only finitely many singularities. Then

$$f^{n_2-n_1}(\omega) = f^{n_2-n_1}(f^{n_1}(p)) = f^{n_2}(p) = \omega,$$

contradicting that ω is not periodic of f.

Thus by the assumption of Case 2, there is a $k \geq 1$, such that $(f^{-k}(\omega)) \cap (\Omega(f)) = \emptyset$ but $(f^{-k+1}(\omega)) \cap (\Omega(f)) \neq \emptyset$. Then we can take a $q \in (f^{-k+1}(\omega)) \cap \Omega(f)$ such that $(f^{-1}(q)) \cap \Omega(f) = \emptyset$. We now adopt a technique of [12] to handle this case. Also see [9] for this technique.

Because q is nonwandering of f, there is a sequence of points $x_1, x_2, \ldots, x_i, \ldots$ in M that converges to q, and a sequence of positive integers $1 < j_1 < j_2 < \cdots < j_i < \cdots$ such that the sequence $f^{j_i}(x_i)$ also converges to q. Let p be a limit point of the sequence

$$f^{j_1}(x_1), f^{j_1}(x_2), \ldots, f^{j_i}(x_i), \ldots.$$

Then $p \in f^{-1}(q)$. Thus $p \notin \Omega(f)$.

Fix a ball B around p such that $(f^n B) \cap B = \emptyset$ for all $n \geq 1$. Since $q \in \Omega(f)$ and $f(\Omega(f)) \subset \Omega(f)$, the positive orbit of q never enters B. Take a neighborhood V_j of $f^{j}(q)$ for each $j = 0, 1, \ldots, k - 2$, such that $V_0, V_1, \ldots, V_{k-2}$ are all disjoint from B, that $f(V_j) \subset V_{j+1}$ for $j = 0, 1, \ldots, k - 3$, and that $f(V_{k-2}) \subset U$. Arbitrarily near p and q, there are two points $f^{j_i}(x_i)$ and x_i for large i. Hence there is a C^1 small perturbation g of
f (here g is f composed with a lift. This lift can be even C^∞ close to the identity), supported on B, that takes $f^{j_i-1}(x_i)$ onto x_i. Note that the g-orbit from x_i to $g^{j_i-1}(x_i)$ are the same as the f-orbit from x_i to $f^{j_i-1}(x_i)$ since the latter intersects B only at the last point $f^{j_i-1}(x_i)$ by the way of choosing B. Hence x_i is periodic of g. Since $f = g$ on V, V_1, \ldots, V_{k-2}, it follows that $g^{k-1}(x_i) = f^{k-1}(x_i) \in U$. Hence g has a periodic point $g^{k-1}(x_i)$ in U. This proves Theorem A for Case 2, and hence proves the whole Theorem A. Q.E.D.

ACKNOWLEDGMENT

It is my great pleasure to thank Professor S. T. Liao for his concern and encouragement throughout the preparation of this paper.

REFERENCES

Department of Mathematics, Peking University, Beijing, 100871, China