Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The $ C\sp 1$ closing lemma for endomorphisms with finitely many singularities


Author: Lan Wen
Journal: Proc. Amer. Math. Soc. 114 (1992), 217-223
MSC: Primary 58F20; Secondary 58F10
DOI: https://doi.org/10.1090/S0002-9939-1992-1087474-6
MathSciNet review: 1087474
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The $ {C^1}$ closing lemma for endomorphisms with finitely many singularities is obtained by combining the $ {C^1}$ closing lemma for nonsingular endomorphisms together with a technique of L. S. Young.


References [Enhancements On Off] (What's this?)

  • [1] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301-308. MR 0283812 (44:1042)
  • [2] S. T. Liao, An extension of the $ {C^1}$ closing lemma, Acta Sci. Natur. Univ. Pekinensis 3 (1979), 1-41. (Chinese) MR 574171 (81m:58066)
  • [3] J. H. Mai, A simpler proof of $ {C^1}$ closing lemma, Sci. Sinica Ser. A 10 (1986), 1021-1031. MR 877286 (88m:58168)
  • [4] -, A simpler proof of the extended $ {C^1}$ closing lemma, Chinese Sci. Bull. 3 (1989), 180-184.
  • [5] C. Pugh, The closing lemma, Amer. J. Math. 89 (1967), 956-1009. MR 0226669 (37:2256)
  • [6] -, An improved closing lemma and a general density theorem, Amer. J. Math. 89 ( 1967), 1010-1021. MR 0226670 (37:2257)
  • [7] C. Pugh and C. Robinson, The $ {C^1}$ closing lemma, including Hamiltonians, Ergodic Theory Dynamical Systems 3 (1986), 261-313. MR 742228 (85m:58106)
  • [8] C. Robinson, Introduction to the closing lemma, Lecture Notes in Math., vol. 668, Springer-Verlag, 1978, pp. 223-230. MR 518562 (80d:58061)
  • [9] L. Wen, A closing lemma of differentiable mappings of the circle, Acta Sci. Natur. Univ. Pekinensis 2 (1982), 13-22. (Chinese) MR 671294 (84e:58058)
  • [10] -, The $ {C^1}$ closing lemma of $ 2$-dimensional non-singular endomorphisms, preprint.
  • [11] -, The $ {C^1}$ closing lemma of non-singular endomorphisms, preprint.
  • [12] L. S. Young, A closing lemma on the interval, Invent. Math. 54 (1979), 179-187. MR 550182 (80k:58084)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F20, 58F10

Retrieve articles in all journals with MSC: 58F20, 58F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1087474-6
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society