Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Stone-Weierstrass theorem without closure under suprema


Authors: R. Preston McAfee and Philip J. Reny
Journal: Proc. Amer. Math. Soc. 114 (1992), 61-67
MSC: Primary 41A65; Secondary 41A10, 46E25, 54C40
DOI: https://doi.org/10.1090/S0002-9939-1992-1091186-2
MathSciNet review: 1091186
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a compact metric space $ X$, consider a linear subspace $ A$ of $ C\left( X \right)$ containing the constant functions. One version of the Stone-Weierstrass Theorem states that, if $ A$ separates points, then the closure of $ A$ under both minima and maxima is dense in $ C\left( X \right)$. By the Hahn-Banach Theorem, if $ A$ separates probability measures, $ A$ is dense in $ C\left( X \right)$. It is shown that if $ A$ separates points from probability measures, then the closure of $ A$ under minima is dense in $ C\left( X \right)$. This theorem has applications in economic theory.


References [Enhancements On Off] (What's this?)

  • [1] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968. MR 0233396 (38:1718)
  • [2] N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Wiley, New York, 1988. MR 1009162 (90g:47001a)
  • [3] A. Friedman, Foundations of modern analysis, Dover, New York, 1970. MR 0275100 (43:858)
  • [4] R. P. McAfee, J. McMillan, and P. Reny, Extracting the surplus in common value auctions, Econometrica 57 (1989), 1451-1459. MR 1035121 (91f:90040)
  • [5] R. P. McAfee and P. Reny, Correlated information and mechanism design, Econometrica (to appear). MR 2015423
  • [6] H. L. Royden, Real analysis, 2nd ed., MacMillan, New York, 1968. MR 0151555 (27:1540)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A65, 41A10, 46E25, 54C40

Retrieve articles in all journals with MSC: 41A65, 41A10, 46E25, 54C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1091186-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society