Second order ergodic theorems for ergodic transformations of infinite measure spaces

Authors:
Jon Aaronson, Manfred Denker and Albert M. Fisher

Journal:
Proc. Amer. Math. Soc. **114** (1992), 115-127

MSC:
Primary 28D05; Secondary 60F15

DOI:
https://doi.org/10.1090/S0002-9939-1992-1099339-4

MathSciNet review:
1099339

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For certain pointwise dual ergodic transformations we prove almost sure convergence of the log-averages

**[1]**J. Aaronson,*Ergodic theory for inner functions of the upper half plane*, Ann. Inst. H. Poincaré. Anal. Non Linéaire**14**(1978), 233-253. MR**508928 (80b:28018)****[2]**-,*The asymptotic distributional behaviour of transformations preserving infinite measures*, J. D'Analyse Math.**39**(1981), 203-234. MR**632462 (82m:28030)****[3]**-,*Random**-expansions*, Ann. Prob.**14**(1986), 1037-1057. MR**841603 (87k:60057)****[4]**T. Bedford and A. M. Fisher,*Analogues of the Lebesgue density theorem for fractal subsets of the reals and integers*, Proc. London Math. Soc. (to appear).**[5]**K. L. Chung and P. Erdös,*Probability limit theorems assuming only the first moment*. I, Mem. Amer. Math. Soc.**6**(1951). MR**0040612 (12:722g)****[6]**W. Feller,*An Introduction to probability theory and its applications*2, Wiley, New York, 1971. MR**0270403 (42:5292)****[7]**A. M. Fisher,*A pathwise central limit theorem for random walks*, Ann. Prob. (to appear).**[8]**-,*Integer Cantor sets and an order-two ergodic theorem*, J. D'Analyse Math. (to appear).**[9]**G. Letac,*Which functions preserve Cauchy laws*, Proc. Amer. Math. Soc.**67**(1977), 277-286. MR**0584393 (58:28433)****[10]**M. Thaler,*Transformations on**with infinite invariant measures*, Israel J. Math.**46**(1983), 67-96. MR**727023 (85g:28020)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28D05,
60F15

Retrieve articles in all journals with MSC: 28D05, 60F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1099339-4

Article copyright:
© Copyright 1992
American Mathematical Society