Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Note on counterexamples in strong unique continuation problems


Author: Thomas H. Wolff
Journal: Proc. Amer. Math. Soc. 114 (1992), 351-356
MSC: Primary 35B60; Secondary 35J05
DOI: https://doi.org/10.1090/S0002-9939-1992-1014648-2
MathSciNet review: 1014648
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There are smooth functions on $ {\mathbb{R}^d}$ vanishing to infinite order at a point and satisfying the differential inequality $ \vert\Delta u\vert \leq V\vert u\vert$ with $ V \in $ weak $ {L^{d/2}}$, and with $ V \in {L^1}$ if $ d = 2$.


References [Enhancements On Off] (What's this?)

  • [1] B. Barcelo, C. E. Kenig, A. Ruiz, and D. C. Sogge, Weighted Sobolev inequalities and unique continuation for the Laplacian plus lower order terms, Illinois J. Math. 32 (1988), 230-245. MR 945861 (89h:35048)
  • [2] S. Chanillo and E. Sawyer, Unique continuation for $ \Delta + V$ and the C. Fefferman-Phong class, Trans. Amer. Math. Soc. 318 (1990), 275-300. MR 958886 (90f:35050)
  • [3] E. Fabes, N. Garofalo, and F. H. Lin, (to appear).
  • [4] D. Jerison, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. in Math. 62 (1986), 118-134. MR 865834 (88b:35218)
  • [5] D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schröding-operators, Ann. of Math. (2) 12 (1985), 463-494. MR 794370 (87a:35058)
  • [6] Y.-M. Kim, Ph.D. Thesis, Massachusetts Institute of Technology, 1989.
  • [7] C. Sogge, A strong unique continuation theorem for second order elliptic differential equations, Amer. J. Math. 112 (1990), 943-984.
  • [8] E. Stein, Appendix to "Unique continuation," Ann. of Math. (2) 121 (1985), 489-494. MR 794370 (87a:35058)
  • [9] G. Szego, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, RI, 1939.
  • [10] T. Wolff, Unique continuation for $ \vert\Delta u\vert \leq V\vert\nabla u\vert$ and related problems, Revista Math. Iberoamericana 6 (1990), 155-200. MR 1125760 (93a:35061)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B60, 35J05

Retrieve articles in all journals with MSC: 35B60, 35J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1014648-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society