Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An inequality of Araki-Lieb-Thirring (von Neumann algebra case)


Author: Hideki Kosaki
Journal: Proc. Amer. Math. Soc. 114 (1992), 477-481
MSC: Primary 46L50; Secondary 46L10, 47A63
DOI: https://doi.org/10.1090/S0002-9939-1992-1065951-1
MathSciNet review: 1065951
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a trace $ \tau $ on a semifinite von Neumann algebra we will prove $ \tau ({({b^{1/2}}a{b^{1/2}})^{rp}}) \leq \tau ({({b^{r/2}}{a^r}{b^{r/2}})^p})$. Here, $ r \geq 1,p > 0$, and $ a,b$ are positive operators.


References [Enhancements On Off] (What's this?)

  • [1] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990), 167-170. MR 1039525 (91d:47020)
  • [2] T. Fack, Sur la notion de valeur caractéristique, J. Operator Theory 7 (1982), 307-333. MR 658616 (84m:47012)
  • [3] T. Fack and H. Kosaki, Generalized $ s$-numbers of $ \tau $-measurable operators, Pacific J. Math. 123 (1986), 269-300. MR 840845 (87h:46122)
  • [4] T. Furuta, Norm inequalities equivalent to Löwner-Heinz theorem, Reviews in Math. Phys. 1 (1989), 135-137. MR 1041534 (91b:47028)
  • [5] H. Kosaki, On the continuity of the map $ \phi \to \vert\phi \vert$ from the predual of a $ {W^*}$-algebra, J. Funct. Anal. 59 (1984), 123-131. MR 763779 (86c:46072)
  • [6] Y. Nakamura, An inequality for generalized $ s$-numbers, Integral Equations Operator Theory 10 (1987), 140-145. MR 868577 (88f:47016)
  • [7] B. Simon, Trace ideals and their applications, Cambridge Univ. Press, 1979. MR 541149 (80k:47048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L50, 46L10, 47A63

Retrieve articles in all journals with MSC: 46L50, 46L10, 47A63


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1065951-1
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society