Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

An inequality of Araki-Lieb-Thirring (von Neumann algebra case)


Author: Hideki Kosaki
Journal: Proc. Amer. Math. Soc. 114 (1992), 477-481
MSC: Primary 46L50; Secondary 46L10, 47A63
DOI: https://doi.org/10.1090/S0002-9939-1992-1065951-1
MathSciNet review: 1065951
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a trace $ \tau $ on a semifinite von Neumann algebra we will prove $ \tau ({({b^{1/2}}a{b^{1/2}})^{rp}}) \leq \tau ({({b^{r/2}}{a^r}{b^{r/2}})^p})$. Here, $ r \geq 1,p > 0$, and $ a,b$ are positive operators.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L50, 46L10, 47A63

Retrieve articles in all journals with MSC: 46L50, 46L10, 47A63


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1065951-1
Article copyright: © Copyright 1992 American Mathematical Society