On the joint spectrum and -functional calculus for pairs of commuting contractions

Author:
Alfredo Octavio

Journal:
Proc. Amer. Math. Soc. **114** (1992), 497-503

MSC:
Primary 47A13; Secondary 47A10, 47A60

DOI:
https://doi.org/10.1090/S0002-9939-1992-1069294-1

MathSciNet review:
1069294

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show the existence of a pair of commuting completely nonunitary contractions on a Hilbert space, whose joint Taylor spectrum contains the torus, such that there is a bounded analytic function on the bidisk with .

**[1]**C. Apostol,*Ultraweakly closed operator algebras*, J. Operator Theory**2**(1979), 49-61. MR**553863 (80k:47005)****[2]**H. Bercovici,*Operator theory and arithmetic in*, Math. Surveys Monographs, Amer. Math. Soc., Providence, RI, 1988. MR**954383 (90e:47001)****[3]**H. Bercovici, C. Foias, and C. Pearcy,*Dual algebras with applications to invariant subspaces and dilation theory*, CBMS Regional Conf. Series in Math., vol. 56, Amer. Math. Soc., Providence, RI, 1985. MR**787041 (87g:47091)****[4]**E. Briem, A. M. Davie, and B. K. Øksendal,*Functional calculus for commuting contractions*, J. London Math. Soc. (2)**7**(1973), 709-718.**[5]**S. Brown, B. Chevreau, and C. Pearcy,*On the structure of contraction operators*II, J. Funct. Anal.**76**(1988), 30-55. MR**923043 (90b:47030b)****[6]**E. F. Collingwood and A. J. Lohwater,*The theory of cluster sets*, Cambridge Univ. Press, London, 1966. MR**0231999 (38:325)****[7]**R. E. Curto,*Applications of several complex variables to multiparameter spectral theory*, Surveys of Recent Results in Operator Theory, vol. II, Longman, London, 1988, pp. 25-90. MR**976843 (90d:47007)****[8]**A. J. Lohwater and G. Piranian,*Bounded analytic functions with large cluster sets*, Ann. Acad. Sci. Fenn. Ser. A I**499**(1971), 3-6. MR**0293099 (45:2178)****[9]**W. Rudin,*Real and complex analysis*, 3rd ed., McGraw-Hill, New York, 1987. MR**924157 (88k:00002)****[10]**-,*Function theory on polydisks*, Benjamin, New York, 1969.**[11]**B. Sz.-Nagy and C. Foias,*Harmonic analysis of operators on Hilbert space*, North-Holland, Amsterdam, 1970. MR**0275190 (43:947)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A13,
47A10,
47A60

Retrieve articles in all journals with MSC: 47A13, 47A10, 47A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1069294-1

Keywords:
Contractions,
joint spectrum,
functional calculus

Article copyright:
© Copyright 1992
American Mathematical Society