Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Orthosymmetric ortholattices


Author: R. Mayet
Journal: Proc. Amer. Math. Soc. 114 (1992), 295-306
MSC: Primary 06C15; Secondary 20M07, 46L10
DOI: https://doi.org/10.1090/S0002-9939-1992-1069692-6
MathSciNet review: 1069692
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Orthosymmetric ortholattices, which form an equational class of algebras, approximate ortholattices of closed subspaces of Hilbert spaces, and more generally projection lattices of von Neumann algebras, more closely than orthomodular lattices


References [Enhancements On Off] (What's this?)

  • [1] D. H. Adams, Equational classes of Foulis semigroups and orthomodular lattices, Proc. Lattice Theory Conf. (J. Schmidt, ed.), Houston, 1973, pp. 486-497. MR 0392721 (52:13538)
  • [2] E. Beltrametti and G. Cassinelli, The logic of quantum mechanics, Addison-Wesley, 1981. MR 635780 (83d:81008)
  • [3] C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1976. MR 1059055 (91c:03026)
  • [4] D. J. Foulis, Baer $ *$-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648-654. MR 0125808 (23:A3105)
  • [5] -, A note on orthomodular lattices, Portugaliae Math. 21 (1962), 65-72. MR 0148581 (26:6088)
  • [6] H. Gross and U. M. Künzi, On a class of orthomodular quadratic spaces, L'Enseign. Math. 31 (1985), 187-212. MR 819350 (87g:15035)
  • [7] R. J. Greechie and S. P. Gudder, Quantum logics, The Logico-Algebraic Approach to Quantum Mechanics, Vol. 1 (C. A. Hooker, ed.), D. Reidel, Dordrecht-Holland, 1975, pp. 545-575.
  • [8] S. S. Holland Jr., The current interest in orthomodular lattices, The Logico-Algebraic Approach to Quantum Mechanics, Vol. 1 (C. A. Hooker, ed), D. Reidel, Dordrecht-Holland, 1975, pp. 437-496.
  • [9] G. Kalmbach, Orthomodular lattices, Academic Press, London, 1983. MR 716496 (85f:06012)
  • [10] C. Piron, Foundation of quantum physics, Benjamin, New York, 1976.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06C15, 20M07, 46L10

Retrieve articles in all journals with MSC: 06C15, 20M07, 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1069692-6
Keywords: Quantum logic, orthomodular lattices, Baer $ *$-semigroups
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society