Centric maps and realization of diagrams in the homotopy category

Authors:
W. G. Dwyer and D. M. Kan

Journal:
Proc. Amer. Math. Soc. **114** (1992), 575-584

MSC:
Primary 55P65

DOI:
https://doi.org/10.1090/S0002-9939-1992-1070515-X

MathSciNet review:
1070515

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem of taking a diagram in the homotopy category and realizing it as a diagram in the category of spaces. Under some assumptions there is a relatively simple obstruction theory for doing this; these assumptions hold in two cases involving homotopy decomposition diagrams for the classifying spaces of compact Lie groups.

**[1]**A. K. Bousfield,*Homotopy spectral sequences and obstructions*, Israel J. Math.**66**(1989), 54-104. MR**1017155 (91a:55027)****[2]**-,*The localization of spaces with respect to homology*, Topology**14**(1975), 133-150. MR**0380779 (52:1676)****[3]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin, 1972. MR**0365573 (51:1825)****[4]**W. G. Dwyer and D. M. Kan,*Function complexes for diagrams of simplicial sets*, Indag. Math.**45**(1983), 139-147. MR**705421 (85e:55038)****[5]**-,*Realizing diagrams in the homotopy category by means of diagrams of simplicial sets*, Proc. Amer. Math. Soc.**91**(1984), 456-460. MR**744648 (86c:55010b)****[6]**-,*A classification theorem for diagrams of simplicial sets*, Topology**23**(1984), 139-155. MR**744846 (86c:55010a)****[7]**-,*Equivariant homotopy classification*, J. Pure Appl. Algebra**35**(1985), 269-285. MR**777259 (86h:55008)****[8]**W. G Dwyer, H. R. Miller, and C. W. Wilkerson,*The homotopic uniqueness of*(Algebraic Topology, Barcelona, 1986), Lecture Notes in Math., vol. 1298, Springer-Verlag, Berlin, 1987, pp. 90-105. MR**928825 (89e:55019)****[9]**W. G. Dwyer and C. W. Wilkerson,*A cohomology decomposition theorem*, Topology (to appear). MR**1167181 (93h:55008)****[10]**W. G Dwyer and A. Zabrodsky,*Maps between classifying spaces*(Algebraic Topology, Barcelona, 1986), Lecture Notes in Math., vol. 1298, Springer-Verlag, Berlin, 1987, pp. 106-119. MR**928826 (89b:55018)****[11]**S. Jackowski,*A fixed-point theorem for**-group actions*, Proc. Amer. Math. Soc.**102**(1988), 205-208. MR**915745 (89a:57052)****[12]**S. Jackowski and J. E. McClure,*A homotopy decomposition theorem for classifying spaces of compact Lie groups*, University of Kentucky, 1988, preprint.**[13]**S. Jackowski, J. E. McClure, and R. Oliver,*Self-maps of classifying spaces*, preprint, 1989.**[14]**D. M. Kan,*On c.s.s. complexes*, Amer. J. Math.**79**(1957), 449-476. MR**0090047 (19:759e)****[15]**R. Lashof, J. P. May, and G. Segal,*Equivariant bundles with abelian structural group*, Proceedings of the Northwestern University Conference on Homotopy Theory, Contemporary Math., vol. 19, Amer. Math., Soc., Providence, 1983, pp. 167-176. MR**711050 (85b:55023)****[16]**S. Mac Lane,*Categories for the working mathematician*, Graduate Texts in Math., vol. 5, Springer-Verlag, Berlin, 1971. MR**1712872 (2001j:18001)****[17]**J. P. May,*Simplicial objects in algebraic topology*, Math. Studies No. 11, Van Nostrand, Princeton, 1967. MR**0222892 (36:5942)****[18]**D. Notbohm,*Abbildungen zwischen klassifizierenden Räume*, Dissertation, Göttingen, 1988.**[19]**D. G. Quillen,*Homotopical Algebra*, Lecture Notes in Math., vol. 43, Springer-Verlag, Berlin, 1967. MR**0223432 (36:6480)****[20]**-,*Rational homotopy theory*, Ann. of Math.**90**(1969), 205-295. MR**0258031 (41:2678)****[21]**A. Zabrodsky,*Maps between classifying spaces*, unpublished manuscript.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55P65

Retrieve articles in all journals with MSC: 55P65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1070515-X

Article copyright:
© Copyright 1992
American Mathematical Society