ON GROUPS WITH A CENTRAL AUTOMORPHISM OF INFINITE ORDER

MARTYN R. DIXON AND M. J. EVANS

(Communicated by Warren J. Wong)

Abstract. It is shown that a group G, whose center has finite exponent, has a central automorphism of infinite order if and only if G has an infinite abelian direct factor. It is also shown that the group of central automorphisms of a nilpotent p-group of infinite exponent contains an uncountable torsionfree abelian subgroup.

1. Introduction

In their paper [5] Menegazzo and Stonehewer show that, apart from a few obvious exceptions, a nilpotent p-group always has an outer automorphism of order p. They also observe that it is often easier, in the case of nilpotent p-groups, to construct automorphisms of finite order and, therefore, pose the question of which nilpotent p-groups have such an automorphism. A partial answer to this question is stated in [5] and an example of a nilpotent p-group that has no automorphism of infinite order is given.

The purpose of the current paper is to characterize those nilpotent p-groups G that have a central automorphism of infinite order. (Here an automorphism of G is called central if it acts trivially on the group modulo its center. We denote the group of central automorphisms of G by $\text{Aut}_c G$.) There are two cases to consider. We show in §2 that if G is a nilpotent p-group of infinite exponent, then $\text{Aut}_c G$ contains an uncountable torsionfree abelian subgroup. The arguments used here follow those of Buckley and Wiegold [1, Theorems 2.2, 2.6], for the most part. However, some additional results are needed, because the automorphisms constructed in [1] do not always have infinite order. In §3 we obtain our main result concerning central automorphisms of nilpotent p-groups. We show that if G is such a group of finite exponent, then G has a central automorphism of infinite order if and only if G has an infinite abelian direct factor. However, our result is a corollary to the following much more general theorem, which we prove in §3.

Theorem 3.1. Suppose G is a group and $Z(G)$ has finite exponent. Then the following are equivalent.

(i) G has a central automorphism of infinite order.
(ii) \(G \) has an infinite abelian direct factor.
(iii) \(\text{Aut}_c G \) contains an uncountable torsionfree abelian subgroup.

Our notation is standard for the most part. For any group \(G \), the commutator subgroup is \(G' \), the center is \(Z(G) \), which we abbreviate to \(Z \), and we write \(G_{ab} \) for \(G/G' \). We use additive notation for abelian groups and, in particular, for subgroups of \(Z \). For a prime \(p \) and natural number \(n \), \(Z[p^n] \) denotes the subgroup of elements of \(Z \) of order dividing \(p^n \), and \(p^nZ \) denotes the subgroup of \(Z \) consisting of \(\{p^n z | z \in Z \} \). We also recall that if \(N \leq Z \) then \(\text{Hom}(G/N, N) \) can be identified with the subgroup of elements of \(\text{Aut}_c G \) that act trivially on both \(N \) and \(G/N \).

2. Nilpotent \(p \)-groups of infinite exponent

Throughout this section we let \(G \) be a nilpotent \(p \)-group of infinite exponent. We refer the reader to [1] and [8] for standard facts concerning basic subgroups of nilpotent \(p \)-groups; recall that a subgroup \(B \) of the group \(G \) is called basic if \(G' \leq B \) and \(B/G' \) is a basic subgroup of the abelian group \(G_{ab} \). We require two preliminary results before proving the main result of this section.

Lemma 2.1. Suppose \(B \) is a basic subgroup of \(G \) and \(N \leq Z(G) \). Suppose \(G = BN \) and \(B \cap N \) has finite exponent. Then \(\text{Aut}_c G \) contains an uncountable torsionfree abelian subgroup.

Proof. Let \(Q = \frac{A}{B \cap N} \), so \(Q \) is a periodic radicable abelian group. Because \(B \cap N \) has finite exponent, it follows that \(\text{Ext}(Q, B \cap N) \) has finite exponent \(m \), say and clearly \(m \) is a power of \(p \). If \(\pi \) is a \(p \)-adic integer of the form \(1 + pm + s_2p^2 + s_3p^3 + \ldots \), where each \(s_i \) is either 0 or \(m \) and infinitely many of them are nonzero, then multiplication by \(\pi \) induces an automorphism of \(Q \) and by [4, Lemma 52.1], \(\pi^* \) is multiplication by \(\pi \) on \(\text{Ext}(Q, B \cap N) \). Thus if \(\Delta \in \text{Ext}(Q, B \cap N) \),

\[
\pi^* \Delta = \Delta \quad \text{because } m \Delta = 0.
\]

On the other hand, because \(Q \) is divisible and \(B \cap N \) has finite exponent, the theory of automorphisms of group extensions (see [7, p. 70]) shows that

\[
\text{C}_{\text{Aut} Q}(\Delta) \leq \text{Aut} N.
\]

Hence \(\text{Aut} N \) contains an uncountable, torsionfree abelian subgroup \(A \), fixing \(B \cap N \). Finally if we define, for each \(\alpha \in A \),

\[
(bn)\bar{\alpha} = b(n\alpha) \quad \text{for } b \in B, \quad n \in N,
\]

then \(\bar{\alpha} \in \text{Aut} G \) and it follows that \(\text{Aut} G \) contains a subgroup isomorphic to \(A \). \(\square \)

The Cartesian product of a family \(\{G_i : i \in I\} \) is denoted by \(\bigtimes_{i \in I} G_i \) and the direct sum by \(\bigoplus_{i \in I} G_i \). For a natural number \(n \), we let \(C_n \) be the cyclic group of order \(n \), and for the prime \(p \), we let \(C_{p^n} \) be the quasicyclic \(p \)-group.

Lemma 2.2. Suppose \(I \) is an index set and \(B = \bigoplus_{i \in I} C_{p^{n(i)}} \). Suppose that \(C \) is a subgroup of \(B \) of infinite exponent. Then there is a direct sum decomposition \(B = X \oplus Y \) such that both \(X \cap C \) and \(Y \cap C \) have infinite exponent.

Proof. We may assume \(D = \bigoplus_{i=1}^{\infty} C_{p^{n(i)}} \), where \(n(i) \leq n(j) \) if \(i \leq j \), is a subgroup of \(B \) such that \(E = C \cap D \) has infinite exponent. Let \((c_1, \ldots, c_1, k_1, \ldots) \),
0, ...), (c_{21}, ..., c_{2, k_2}, 0, ...), ... be a sequence of elements of \(E \) with orders \(p^{m_1}, p^{m_2}, ... \) where

\[p^{m_{i+1}} > p^{n(k_i)+m_i} \quad i = 1, 2, \]

Then \(k_i < k_{i+1} \) for all \(i \). Consider

\[p^{n(k_i)}(c_{i+1, 1}, ... , c_{i, k_i}, ... , c_{i+1, k_{i+1}}, 0, ...). \]

This is an element of \(E \) of order \(p^{m_{i+1} - n(k_i)} > p^{m_i} \). Set \(I_1 = \{1, ..., k_1\} \) and \(I_{j+1} = \{k_j + 1, ..., k_{j+1}\} \) for \(j \geq 1 \). We may find sets \(J, K \subseteq I \) such that \(J \cup K = I, J \cap K = \emptyset, \bigcup_{j=1}^{\infty} I_{2j} \subseteq J \), and \(\bigcup_{j=1}^{\infty} I_{2j-1} \subseteq K \). Then set \(X = \bigoplus_{i \in J} C_{p^{n(i)}} \) and \(Y = \bigoplus_{i \in K} C_{p^{n(i)}} \). The subgroups \(X \) and \(Y \) have the desired properties. \(\square \)

Theorem 2.3. If \(G \) is a nilpotent \(p \)-group of infinite exponent then \(\text{Aut}_eG \) contains an uncountable torsionfree abelian subgroup.

Proof. There are a number of cases to consider.

Case 1. Suppose \(G \) is nonreduced, and let \(B \) be a basic subgroup of \(G \). Let \(N \) be a central subgroup of \(G \) such that \(N \cong C_p^\infty \). If \(G/BN \) is nontrivial, then \(\text{Hom}(G/BN, N) \) is an uncountable torsionfree abelian subgroup of \(\text{Aut}_eG \) as required. If \(G = BN \) then either \(N \leq B \) or \(B \cap N \) is finite. In the former case, \(G_{ab} = \bigoplus_{i \in I} C_{p^{n(i)}} \), for some index set \(I \) and \(G_{ab} \) has infinite exponent, since \(G \) does. Since \(G_{ab} \) is reduced, \(N \leq G' \) and hence \(\text{Hom}(G_{ab}, N) \leq \text{Aut}_eG \). Thus \(C_{p^{n(i)}} \) is a subgroup of \(\text{Aut}_eG \) and the result now follows from [1, Lemma 2.5]. If \(B \cap N \) is finite then Lemma 2.1 applies, again giving the result.

Case 2. Suppose \(G \) is reduced. According to [8, XVI] every basic subgroup \(B \) is infinite. If \(B \) has finite exponent then [8, XV] shows that \(G = BZ \). Hence by Lemma 2.1, \(\text{Aut}_eG \) satisfies the desired conclusion. If \(B \) has infinite exponent but \(G' \cap Z \) has finite exponent, then \(G/Z \) also has finite exponent (the correct version of [8, IX]). Hence \(B \cap Z \) has infinite exponent. Then \((B \cap Z)G'/G' \) is a subgroup of infinite exponent in the group \(G/G' \), a direct sum of cyclic groups. By Lemma 2.2, we can find \(X/G', Y/G' \) so that \(B/G' = X/G' \oplus Y/G' \) and \(X/G' \cap (B \cap Z)G'/G', Y/G' \cap (B \cap Z)G'/G' \) both have infinite exponent.

Hence \(X \cap Z \) and \(Y \cap Z \) both have infinite exponent. However, \(B/X \) is a basic subgroup of \(G/X \) and the epimorphism of Széle [4, 36.1] yields

\[\text{Hom}(Y/G', X \cap Z) \leq \text{Hom}(G/X \cap Z, X \cap Z) \leq \text{Aut}_eG \]

and \(\text{Aut}_eG \) contains an uncountable torsionfree abelian subgroup in this case.

Finally, if both \(B \) and \(G' \cap Z \) have infinite exponent then the proof of [1, Theorem 2.6] gives the result in this case. This completes the proof. \(\square \)

3. THE FINITE EXPONENT CASE

We first give a proof of Theorem 3.1.

Let \(\pi \) denote the set of primes dividing the exponent of \(Z(G) \).

(i) **implies** (ii). Let \(\alpha \) be a central automorphism of \(G \) that has infinite order and note that \(\alpha \) induces an automorphism of infinite order on \(Z = Z(G) \). (We say that \(\alpha \) acts infinitely on \(Z \).) Since \(\pi \) is finite and, for each prime \(p \in \pi \), the Sylow \(p \)-subgroups of \(Z \) are characteristic in \(G \), there is some prime \(p \in \pi \).
such that α acts infinitely on the Sylow p-subgroup of Z, which we denote by K. Let L be the p'-part of Z so that $Z = K \oplus L$.

Let $k \in \mathbb{N}$ be minimal such that some nontrivial power of α acts trivially on $p^k K$. Replacing α with a nontrivial power of itself if necessary we may assume that α acts trivially on $p^k K$. It then follows that α acts infinitely on $p^{k-1} K / p^k K$, otherwise some nontrivial power of α acts trivially on both $p^{k-1} K / p^k K$ and $p^k K$. However, this implies some nontrivial power of α acts trivially on $p^{k-1} K$, contrary to the minimality of k.

We set $M = p^{k-1} K (\alpha - 1) = \{ z(\alpha - 1) | z \in p^{k-1} K \}$ and note that M is an α-invariant subgroup of $p^{k-1} K$. To complete the proof we now establish a series of claims.

(a) M has exponent p.

For if $m \in M$, then $m = za - z$ for some $z \in p^{k-1} K$. Then $pz \in p^k K$ so $pz = p(za) = p(za) = p(z) = p(za) = p(za) = p(za) = p(za) = p(za) = p(za)$.

(b) α acts infinitely on M.

For if α acts finitely on M then some nontrivial power of α acts trivially on M. Clearly α acts trivially on $p^{k-1} K / M$ so some power of α acts trivially on $p^{k-1} K$, which contradicts the choice of k.

(c) α acts infinitely on $P = MG'(p^k K) / G'(p^k K)$. Otherwise α acts finitely on P, so some nontrivial power of α acts trivially on P. Since α is central, it acts trivially on G'. Hence some nontrivial power of α acts trivially on $MG'(p^k K)$, contrary to (b). Hence (c) follows.

We let $C = C_p(\alpha)$. It follows from (a) that $P = C \oplus D$ for some subgroup D (which is not necessarily α-invariant.) Furthermore D is infinite by (c). Let I be an index set and, for $i \in I$, choose $r_i \in M$ so that $\{ r_i G'(p^k K) | i \in I \}$ is a basis of D. Define $N = \langle r_i | i \in I \rangle$ and note that N is an infinite elementary abelian subgroup of $M \leq p^{k-1} K$. It is clear that:

(d) $n^\alpha \not\equiv n \mod G'(p^k K)$ for all nontrivial $n \in N$.

It follows from [4, p. 119, Example 5] that K (and hence Z) has a direct summand A such that $A[p] = N$. Set $Z = A \oplus F$. Since A is a direct summand of Z, each $0 \neq n \in N$ has the same p-height in A as in Z. Furthermore $N \leq M \leq p^{k-1} K$. Hence:

(e) The p-height of $0 \neq n \in N$ in A is at least $k - 1$. (In fact one can easily see that it is exactly $k - 1$.)

(f) AG'/G' is a direct summand of G_{ab}.

It suffices by [4, Corollary 27.5] to show that AG'/G' is pure in G_{ab}, and to do this it is enough to show that every element of order p in AG'/G' has the same p-height in G_{ab} as in AG'/G' (see [4, p. 114, (h)]) and also note that the Sylow p-subgroup of G_{ab} is pure in G_{ab}).

Now $A \cap G' = 1$ since α fixes no nontrivial element of $A[p] = N$, by (d), whereas the central automorphism α acts trivially on G'. It follows that $(AG'/G')[p] = NG'/G'$.

Suppose for a contradiction that $n + G' \in NG'/G'$ has larger p-height in G_{ab} than in AG'/G'. Then by (e), $n + G' = p^l g + G'$ for some $g \in G$ and some $l \geq k$. Since α is central, $g \alpha = g + z$ for some $z \in Z$ so that

(1) \[n \alpha + G' = (p^l g) \alpha + G' = p^l g + p^l z + G' = n + p^l z + G'. \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Also \(pn = 0 \) so \(p^{l+1}g \in G' \) and since \(\alpha \) is central \(p^{l+1}g = (p^{l+1}g)\alpha = p^{l+1}g + p^{l+1}z \). Hence \(z \in K \), the Sylow \(p \)-subgroup of \(Z \) so (1) shows
\[
n\alpha \equiv n \mod G'p^kK,
\]
contrary to (d). This proves (f).

The result now follows immediately. For there is a subgroup \(H \) of \(G \) such that
\[
G_{ab} = AG'/G' \oplus H/G'.
\]
Hence \(G = AH \). But \(A \cap H \leq A \cap G' = 1 \) and \(A \leq Z(G) \) so it follows that \(G = A \times H \).

(ii) implies (iii). Clearly \(Cr^\infty_{m=1}C_{p^m} \leq \text{Aut}_cG \). Hence by [1, Lemma 2.5] the result follows.

(iii) implies (i). This is clear.

In particular, we have

Corollary 3.2. Suppose \(G \) is a nilpotent \(p \)-group of finite exponent. Then \(G \) has a central automorphism of infinite order if and only if \(G \) has an infinite abelian direct factor.

This result is analogous to [3, Lemma 2] although the proof is rather different. The reader is also referred to [2, 6] where further results have been obtained on central automorphisms of infinite groups.

An example. We note that Theorem 3.1 fails if \(Z(G) \) is allowed to have infinite exponent. For each prime \(p \), let \(G_p \) be a nilpotent \(p \)-group as in [5, 3.2(ii)] such that \(\text{Aut} G_p = \text{Aut}_cG_p \) is an elementary abelian \(p \)-group. Set \(G = \bigoplus G_p \), the direct sum being taken over all primes \(p \). Then \(\text{Aut} G = \text{Cr}(\text{Aut} G_p) \) and \(\text{Aut}_cG \) clearly contains elements of infinite order. However \(G \) has no infinite abelian direct factor.

Acknowledgment

The first author is indebted to the Mathematics Institute, University of Warwick for its hospitality while this research was being done.

References

Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35487-0350